IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v28y1996i4p353-358.html
   My bibliography  Save this article

Root-n consistent estimation in partly linear regression models

Author

Listed:
  • Schick, Anton

Abstract

This paper deals with root-n consistent estimation of the parameter [beta] in the partly linear regression model Y = [beta]T U + [gamma](X) + [var epsilon], where , [gamma] is a function on [0, 1]q, the error variable [var epsilon] satisfies E([var epsilon] / U, X) = 0 and E([var epsilon]2 / U, X) is bounded, and the random vector (UT, XT)T is . Under an identifiability condition, least squares type estimates of [beta] are shown to be root-n consistent under mild smoothness assumptions on [gamma], h or both, where h(X) = E(U X). No assumption on the distribution of X are imposed. This result improves on a result of Chen (1988).

Suggested Citation

  • Schick, Anton, 1996. "Root-n consistent estimation in partly linear regression models," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 353-358, August.
  • Handle: RePEc:eee:stapro:v:28:y:1996:i:4:p:353-358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00145-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Hua & Härdle, Wolfgang, 1997. "Large sample theory of the estimation of the error distribution for a semiparametric model," SFB 373 Discussion Papers 1997,101, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    3. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    4. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2014. "Testing for additivity in partially linear regression with possibly missing responses," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 51-61.
    5. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    6. Müller Ursula U. & Schick Anton & Wefelmeyer Wolfgang, 2007. "Estimating the error distribution function in semiparametric regression," Statistics & Risk Modeling, De Gruyter, vol. 25(1), pages 1-18, January.
    7. Michael Levine, 2019. "Robust functional estimation in the multivariate partial linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 743-770, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
    4. Wang, Xiaoguang & Lu, Dawei & Song, Lixin, 2013. "Statistical inference for partially linear stochastic models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 150-160.
    5. Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
    6. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    7. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    8. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    9. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    10. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    11. Aneiros-Perez, G. & Vilar-Fernandez, J.M., 2008. "Local polynomial estimation in partial linear regression models under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2757-2777, January.
    12. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    13. You, Jinhong & Zhou, Xian & Chen, Gemai, 2005. "Jackknifing in partially linear regression models with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 386-404, February.
    14. Hong, Sheng-Yan, 2002. "Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 1-20, January.
    15. Gao, Jiti & Liang, Hua, 1995. "Asymptotic normality of pseudo-LS estimator for partly linear autoregression models," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 27-34, April.
    16. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    18. Germán Aneiros-Pérez, 2004. "Plug-in bandwidth choice for estimation of nonparametric part in partial linear regression models with strong mixing errors," Statistical Papers, Springer, vol. 45(2), pages 191-210, April.
    19. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    20. Ai, Chunrong & McFadden, Daniel, 1997. "Estimation of some partially specified nonlinear models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 1-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:28:y:1996:i:4:p:353-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.