IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v128y2014icp51-61.html
   My bibliography  Save this article

Testing for additivity in partially linear regression with possibly missing responses

Author

Listed:
  • Müller, Ursula U.
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

We consider a partially linear regression model with multivariate covariates and with responses that are allowed to be missing at random. This covers the usual settings with fully observed data and the nonparametric regression model as special cases. We first develop a test for additivity of the nonparametric part in the complete data model. The test statistic is based on the difference between two empirical estimators that estimate the errors in two ways: the first uses a local polynomial smoother for the nonparametric part; the second estimates the additive components by a marginal integration estimator derived from the local polynomial smoother. We present a uniform stochastic expansion of the empirical estimator based on the marginal integration estimator, and we derive the asymptotic distribution of the test statistic. The transfer principle of Koul et al. (2012) then allows a direct adaptation of the results to the case when responses are missing at random. We examine the performance of the tests in a small simulation study.

Suggested Citation

  • Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2014. "Testing for additivity in partially linear regression with possibly missing responses," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 51-61.
  • Handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:51-61
    DOI: 10.1016/j.jmva.2014.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14000505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neumeyer, N. & Van Keilegom, I., 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," LIDAM Reprints ISBA 2010006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    3. Newey, Whitney K., 1994. "Series Estimation of Regression Functionals," Econometric Theory, Cambridge University Press, vol. 10(1), pages 1-28, March.
    4. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    5. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2009. "Estimating the error distribution function in nonparametric regression with multivariate covariates," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 957-964, April.
    6. Stefan Sperlich & Oliver Linton & Wolfgang Härdle, 1999. "Integration and backfitting methods in additive models-finite sample properties and comparison," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 419-458, December.
    7. Schick, Anton, 1996. "Root-n consistent estimation in partly linear regression models," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 353-358, August.
    8. Schick, Anton, 1996. "Root-n-consistent and efficient estimation in semiparametric additive regression models," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 45-51, September.
    9. Efromovich, Sam, 2011. "Nonparametric Regression With Predictors Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 306-319.
    10. Ingrid Keilegom & Wenceslao González Manteiga & César Sánchez Sellero, 2008. "Goodness-of-fit tests in parametric regression based on the estimation of the error distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 401-415, August.
    11. W. Stute & W. L. Xu & L. X. Zhu, 2008. "Model diagnosis for parametric regression in high-dimensional spaces," Biometrika, Biometrika Trust, vol. 95(2), pages 451-467.
    12. Eubank, R. L. & Hart, J. D. & Speckman, Paul, 1990. "Trigonometric series regression estimators with an application to partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 32(1), pages 70-83, January.
    13. Neumeyer, Natalie & Van Keilegom, Ingrid, 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1067-1078, May.
    14. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    15. Donald, S. G. & Newey, W. K., 1994. "Series Estimation of Semilinear Models," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 30-40, July.
    16. Michel Delecroix & Camelia Protopopescu, 2000. "Are Regression Series Estimators Efficient in Practice? A Computational Comparison Study," Computational Statistics, Springer, vol. 15(4), pages 511-529, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Jun Zhang & Zhenghui Feng & Xiaoguang Wang, 2018. "A constructive hypothesis test for the single-index models with two groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1077-1114, October.
    3. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    4. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    5. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    7. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Escanciano, Juan Carlos & Pardo-Fernandez, Juan Carlos & Van Keilegom, Ingrid, 2015. "Asymptotic distribution-free tests for semiparametric regressions," LIDAM Discussion Papers ISBA 2015001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Heuchenne, Cédric & Van Keilegom, Ingrid, 2010. "Goodness-of-fit tests for the error distribution in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1942-1951, August.
    10. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    11. Györfi László & Walk Harro, 2013. "Rate of convergence of the density estimation of regression residual," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 55-74, March.
    12. Chown, Justin, 2016. "Efficient estimation of the error distribution function in heteroskedastic nonparametric regression with missing data," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 31-39.
    13. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    14. Colling, Benjamin & Van Keilegom, Ingrid, 2017. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 10-30.
    15. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    16. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    17. Lai, Peng & Meng, Jie & Lian, Heng, 2015. "Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 21-27.
    18. Guo, Zheng-Feng & Shintani, Mototsugu, 2011. "Nonparametric lag selection for nonlinear additive autoregressive models," Economics Letters, Elsevier, vol. 111(2), pages 131-134, May.
    19. Huang, Ho-Chuan, 2005. "Diverging evidence of convergence hypothesis," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 233-255, June.
    20. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:51-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.