IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v45y2004i2p191-210.html
   My bibliography  Save this article

Plug-in bandwidth choice for estimation of nonparametric part in partial linear regression models with strong mixing errors

Author

Listed:
  • Germán Aneiros-Pérez

Abstract

No abstract is available for this item.

Suggested Citation

  • Germán Aneiros-Pérez, 2004. "Plug-in bandwidth choice for estimation of nonparametric part in partial linear regression models with strong mixing errors," Statistical Papers, Springer, vol. 45(2), pages 191-210, April.
  • Handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:191-210
    DOI: 10.1007/BF02777223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02777223
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02777223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Aneiros-Pérez, Germán, 2002. "On bandwidth selection in partial linear regression models under dependence," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 393-401, May.
    4. Roussas, George G. & Tran, Lanh T. & Ioannides, D. A., 1992. "Fixed design regression for time series: Asymptotic normality," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 262-291, February.
    5. Wolfgang Härdle & Philippe Vieu, 1992. "Kernel Regression Smoothing Of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(3), pages 209-232, May.
    6. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    4. Aneiros-Pérez, Germán, 2002. "On bandwidth selection in partial linear regression models under dependence," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 393-401, May.
    5. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    6. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    8. Aneiros-Perez, G. & Vilar-Fernandez, J.M., 2008. "Local polynomial estimation in partial linear regression models under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2757-2777, January.
    9. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    10. Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
    11. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    12. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    13. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    14. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    15. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    16. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    17. Xialu Liu & Zongwu Cai & Rong Chen, 2015. "Functional coefficient seasonal time series models with an application of Hawaii tourism data," Computational Statistics, Springer, vol. 30(3), pages 719-744, September.
    18. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    19. Schick, Anton, 1996. "Root-n consistent estimation in partly linear regression models," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 353-358, August.
    20. Oliver Linton, 2001. "Symmetrizing and unitizing transformations for linear smoother weights," Computational Statistics, Springer, vol. 16(1), pages 153-164, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:191-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.