IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v187y2022ics0167715222000827.html
   My bibliography  Save this article

RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices

Author

Listed:
  • Liu, Yan
  • Bai, Zhidong
  • Li, Hua
  • Hu, Jiang
  • Lv, Zhihui
  • Zheng, Shurong

Abstract

In this paper, we extend the CLT for sample spiked eigenvalues in the generalized spiked covariance model proposed in Jiang and Bai (2021a) to the case where RDS is considered free, i.e., except for an upper limit of the RDS to guarantee that the spiked eigenvalue is distant, there is no limit for p/n, which is the Ratio of Dimension to sample Size (RDS). Therefore, the choice of dimensionality and sample size is more flexible in our regime.

Suggested Citation

  • Liu, Yan & Bai, Zhidong & Li, Hua & Hu, Jiang & Lv, Zhihui & Zheng, Shurong, 2022. "RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:stapro:v:187:y:2022:i:c:s0167715222000827
    DOI: 10.1016/j.spl.2022.109501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Bai, Zhidong & Yao, Jianfeng, 2012. "On sample eigenvalues in a generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 167-177.
    3. Seunggeun Lee & Fei Zou & Fred A. Wright, 2014. "Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data," Biometrika, Biometrika Trust, vol. 101(2), pages 484-490.
    4. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    5. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    6. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    7. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Dey, Rounak & Lee, Seunggeun, 2019. "Asymptotic properties of principal component analysis and shrinkage-bias adjustment under the generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 145-164.
    3. Damien Passemier & Zhaoyuan Li & Jianfeng Yao, 2017. "On estimation of the noise variance in high dimensional probabilistic principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 51-67, January.
    4. Passemier, Damien & McKay, Matthew R. & Chen, Yang, 2015. "Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 124-146.
    5. Anna Bykhovskaya & Vadim Gorin, 2023. "High-Dimensional Canonical Correlation Analysis," Papers 2306.16393, arXiv.org, revised Jan 2025.
    6. Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
    7. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    8. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    9. Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper Series of the Department of Economics, University of Konstanz 2018-07, Department of Economics, University of Konstanz.
    10. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España.
    11. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    12. Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
    13. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    14. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
    15. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    16. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    17. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
    18. Pellényi, Gábor, 2012. "A monetáris politika hatása a magyar gazdaságra. Elemzés strukturális, dinamikus faktormodellel [The sectoral effects of monetary policy in Hungary: a structural factor]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 263-284.
    19. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    20. Xavier Gabaix & Ralph S. J. Koijen, 2024. "Granular Instrumental Variables," Journal of Political Economy, University of Chicago Press, vol. 132(7), pages 2274-2303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:187:y:2022:i:c:s0167715222000827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.