IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i2p484-490..html
   My bibliography  Save this article

Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data

Author

Listed:
  • Seunggeun Lee
  • Fei Zou
  • Fred A. Wright

Abstract

The development of high-throughput biomedical technologies has led to increased interest in the analysis of high-dimensional data where the number of features is much larger than the sample size. In this paper, we investigate principal component analysis under the ultra-high dimensional regime, where both the number of features and the sample size increase as the ratio of the two quantities also increases. We bridge the existing results from the finite and the high-dimension low sample size regimes, embedding the two regimes in a more general framework. We also numerically demonstrate the universal application of the results from the finite regime.

Suggested Citation

  • Seunggeun Lee & Fei Zou & Fred A. Wright, 2014. "Convergence of sample eigenvalues, eigenvectors, and principal component scores for ultra-high dimensional data," Biometrika, Biometrika Trust, vol. 101(2), pages 484-490.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:484-490.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast064
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yan & Bai, Zhidong & Li, Hua & Hu, Jiang & Lv, Zhihui & Zheng, Shurong, 2022. "RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 187(C).
    2. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    3. Mei Choi Chiu & Chi Seng Pun & Hoi Ying Wong, 2017. "Big Data Challenges of High‐Dimensional Continuous‐Time Mean‐Variance Portfolio Selection and a Remedy," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1532-1549, August.
    4. Dey, Rounak & Lee, Seunggeun, 2019. "Asymptotic properties of principal component analysis and shrinkage-bias adjustment under the generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 145-164.
    5. Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:484-490.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.