IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v130y2014icp194-207.html
   My bibliography  Save this article

A note on the CLT of the LSS for sample covariance matrix from a spiked population model

Author

Listed:
  • Wang, Qinwen
  • Silverstein, Jack W.
  • Yao, Jian-feng

Abstract

In this note, we establish an asymptotic expansion for the centering parameter appearing in the central limit theorems for linear spectral statistic of large-dimensional sample covariance matrices when the population has a spiked covariance structure. As an application, we provide an asymptotic power function for the corrected likelihood ratio statistic for testing the presence of spike eigenvalues in the population covariance matrix. This result generalizes an existing formula from the literature where only one simple spike exists.

Suggested Citation

  • Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
  • Handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:194-207
    DOI: 10.1016/j.jmva.2014.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    2. Bai, Zhidong & Yao, Jianfeng, 2012. "On sample eigenvalues in a generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 167-177.
    3. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    4. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    5. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    6. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    7. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhendong & Xu, Xingzhong, 2021. "Testing high dimensional covariance matrices via posterior Bayes factor," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Passemier, Damien & McKay, Matthew R. & Chen, Yang, 2015. "Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 124-146.
    3. Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    2. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    3. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    4. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    5. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    6. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    7. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    8. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.
    9. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    10. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    11. Bada, Oualid & Kneip, Alois, 2014. "Parameter cascading for panel models with unknown number of unobserved factors: An application to the credit spread puzzle," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 95-115.
    12. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    13. Bo Zhang & Jiti Gao & Guangming Pan & Yanrong Yang, 2019. "Spiked Eigenvalues of High-Dimensional Separable Sample Covariance Matrices," Monash Econometrics and Business Statistics Working Papers 31/19, Monash University, Department of Econometrics and Business Statistics.
    14. repec:dgr:rugsom:14008-eef is not listed on IDEAS
    15. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    16. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    17. Li, Weiming & Zhu, Junpeng, 2023. "CLT for spiked eigenvalues of a sample covariance matrix from high-dimensional Gaussian mean mixtures," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    18. Bai, Zhidong & Yao, Jianfeng, 2012. "On sample eigenvalues in a generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 167-177.
    19. Matthieu Stigler & David Lobell, 2024. "Optimal index insurance and basis risk decomposition: an application to Kenya," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 306-329, January.
    20. Liu, Yan & Bai, Zhidong & Li, Hua & Hu, Jiang & Lv, Zhihui & Zheng, Shurong, 2022. "RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 187(C).
    21. Mo, M.Y., 2010. "Universality in complex Wishart ensembles for general covariance matrices with 2 distinct eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1203-1225, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:194-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.