IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v139y2015icp124-146.html
   My bibliography  Save this article

Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models

Author

Listed:
  • Passemier, Damien
  • McKay, Matthew R.
  • Chen, Yang

Abstract

This paper derives central limit theorems (CLTs) for general linear spectral statistics (LSS) of three important multi-spiked Hermitian random matrix ensembles. The first is the most common spiked scenario, proposed by Johnstone, which is a central Wishart ensemble with fixed-rank perturbation of the identity matrix, the second is a non-central Wishart ensemble with fixed-rank noncentrality parameter, and the third is a similarly defined non-central F ensemble. These CLT results generalize our recent work Passemier (2015) to account for multiple spikes, which is the most common scenario met in practice. The generalization is non-trivial, as it now requires dealing with hypergeometric functions of matrix arguments. To facilitate our analysis, for a broad class of such functions, we first generalize a recent result of Onatski (2014) to present new contour integral representations, which are particularly suitable for computing large-dimensional properties of spiked matrix ensembles. Armed with such representations, our CLT formulas are derived for each of the three spiked models of interest by employing the Coulomb fluid method from random matrix theory along with saddlepoint techniques. We find that for each matrix model, and for general LSS, the individual spikes contribute additively to yield a O(1) correction term to the asymptotic mean of the linear statistic, which we specify explicitly, whilst having no effect on the leading order terms of the mean or variance.

Suggested Citation

  • Passemier, Damien & McKay, Matthew R. & Chen, Yang, 2015. "Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 124-146.
  • Handle: RePEc:eee:jmvana:v:139:y:2015:i:c:p:124-146
    DOI: 10.1016/j.jmva.2015.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    3. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    4. Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
    5. Passemier, Damien & Yao, Jianfeng, 2014. "Estimation of the number of spikes, possibly equal, in the high-dimensional case," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 173-183.
    6. Leung, Pui Lam, 1994. "An identity for the noncentral wishart distribution with application," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 107-114, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Liu, Yan & Bai, Zhidong & Li, Hua & Hu, Jiang & Lv, Zhihui & Zheng, Shurong, 2022. "RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 187(C).
    4. Anna Bykhovskaya & Vadim Gorin, 2023. "High-Dimensional Canonical Correlation Analysis," Papers 2306.16393, arXiv.org, revised Aug 2023.
    5. Damien Passemier & Zhaoyuan Li & Jianfeng Yao, 2017. "On estimation of the noise variance in high dimensional probabilistic principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 51-67, January.
    6. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    7. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    8. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    9. Chen, Liang, 2012. "Identifying observed factors in approximate factor models: estimation and hypothesis testing," MPRA Paper 37514, University Library of Munich, Germany.
    10. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    11. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    12. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    13. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    14. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    15. Claudio Barbieri & Mattia Guerini & Mauro Napoletano, 2021. "The anatomy of government bond yields synchronization in the Eurozone," SciencePo Working papers Main hal-03373853, HAL.
    16. Piyachart Phiromswad & Takeshi Yagihashi, 2016. "Empirical identification of factor models," Empirical Economics, Springer, vol. 51(2), pages 621-658, September.
    17. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    18. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    19. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    20. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:139:y:2015:i:c:p:124-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.