IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v162y2020ics0167715220300699.html
   My bibliography  Save this article

Nonparametric inference for covariate-adjusted model

Author

Listed:
  • Dai, Shuang
  • Huang, Zhensheng

Abstract

In this paper, we provide a nonparametric test for the covariate-adjusted model where the variables are not directly observed, but are observed after being distorted by unknown functions of a commonly observable covariate in a multiplicative fashion. We estimate the distorting functions by nonparametrically regressing the response and predictors on the distorting covariate, and calculate the estimators of the unobserved variables. Based on the calibrated variables, we propose a generalized likelihood ratio (GLR) test statistic to check the adequacy for the covariate-adjusted model and establish the asymptotic property of the GLR test statistic. Moreover, we carry out some simulated and real examples to evaluate the performance of the GLR test statistic, and make comparisons with these results obtained by Zhang et al. (2015).

Suggested Citation

  • Dai, Shuang & Huang, Zhensheng, 2020. "Nonparametric inference for covariate-adjusted model," Statistics & Probability Letters, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300699
    DOI: 10.1016/j.spl.2020.108766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jingxin & Xie, Chuanlong, 2018. "A nonparametric test for covariate-adjusted models," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 65-70.
    2. Zhang, Jun & Li, Gaorong & Feng, Zhenghui, 2015. "Checking the adequacy for a distortion errors-in-variables parametric regression model," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 52-64.
    3. Zhang, Jun & Zhu, Li-Xing & Liang, Hua, 2012. "Nonlinear models with measurement errors subject to single-indexed distortion," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 1-23.
    4. Jianqing Fan & Jiancheng Jiang, 2007. "Rejoinder on: Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 471-478, December.
    5. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    2. Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
    3. Yingli Pan & Zhan Liu & Guangyu Song, 2021. "Outlier detection under a covariate-adjusted exponential regression model with censored data," Computational Statistics, Springer, vol. 36(2), pages 961-976, June.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    5. Li, Degui & Simar, Léopold & Zelenyuk, Valentin, 2016. "Generalized nonparametric smoothing with mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 424-444.
    6. Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
    7. Teresa D. Harrison & Daniel J. Henderson & Deniz Ozabaci & Christopher A. Laincz, 2023. "Does one size fit all in the non‐profit donation production function?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 373-402, April.
    8. Jun Zhang & Yiping Yang & Gaorong Li, 2020. "Logarithmic calibration for multiplicative distortion measurement errors regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 462-488, November.
    9. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    10. Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang & Xibin Zhang, 2015. "A new semiparametric test for superior predictive ability," Empirical Economics, Springer, vol. 48(1), pages 389-405, February.
    11. Zhao, Jingxin & Xie, Chuanlong, 2018. "A nonparametric test for covariate-adjusted models," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 65-70.
    12. Peroni Chiara, 2009. "A Non-Parametric Investigation of Risk Premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(4), pages 1-52, September.
    13. Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.
    14. Subal Kumbhakar & Christopher Parmeter, 2015. "Introduction," Empirical Economics, Springer, vol. 48(1), pages 1-8, February.
    15. Tianshun Yan & Changlin Mei, 2017. "A test for a parametric form of the volatility in second-order diffusion models," Computational Statistics, Springer, vol. 32(4), pages 1583-1596, December.
    16. Jianqing Fan & Wenyang Zhang, 2015. "Discussion," International Statistical Review, International Statistical Institute, vol. 83(1), pages 65-68, April.
    17. J. Ojeda & W. González-Manteiga & J. Cristóbal, 2015. "Testing regression models with selection-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 411-436, June.
    18. Iván Werning, 2016. "Comment on "Is the Macroeconomy Locally Unstable and Why Should We Care?"," NBER Chapters, in: NBER Macroeconomics Annual 2016, Volume 31, pages 540-552, National Bureau of Economic Research, Inc.
    19. Olivier Collier & Arnak S, Dalalyan, 2013. "Curve registration by Nonparametric goodness-of-fit Testing," Working Papers 2013-33, Center for Research in Economics and Statistics.
    20. Zhang, Jun & Li, Gaorong & Feng, Zhenghui, 2015. "Checking the adequacy for a distortion errors-in-variables parametric regression model," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 52-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.