IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i4d10.1007_s11749-024-00944-8.html
   My bibliography  Save this article

Higher-order spatial autoregressive varying coefficient model: estimation and specification test

Author

Listed:
  • Tizheng Li

    (Xi’an University of Architecture and Technology)

  • Yuping Wang

    (Xi’an University of Architecture and Technology)

Abstract

Conventional higher-order spatial autoregressive models assume that regression coefficients are constant over space, which is overly restrictive and unrealistic in applications. In this paper, we introduce higher-order spatial autoregressive varying coefficient model where regression coefficients are allowed to smoothly change over space, which enables us to simultaneously explore different types of spatial dependence and spatial heterogeneity of regression relationship. We propose a semi-parametric generalized method of moments estimation method for the proposed model and derive asymptotic properties of resulting estimators. Moreover, we propose a testing method to detect spatial heterogeneity of the regression relationship. Simulation studies show that the proposed estimation and testing methods perform quite well in finite samples. The Boston house price data are finally analyzed to demonstrate the proposed model and its estimation and testing methods.

Suggested Citation

  • Tizheng Li & Yuping Wang, 2024. "Higher-order spatial autoregressive varying coefficient model: estimation and specification test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1258-1299, December.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00944-8
    DOI: 10.1007/s11749-024-00944-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00944-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00944-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    4. Zhenlin Yang, 2018. "Bootstrap LM tests for higher-order spatial effects in spatial linear regression models," Empirical Economics, Springer, vol. 55(1), pages 35-68, August.
    5. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    6. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    7. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    8. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    9. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    10. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    11. Pace, R Kelley & Gilley, Otis W, 1997. "Using the Spatial Configuration of the Data to Improve Estimation," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 333-340, May.
    12. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    13. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
    14. Tadao Hoshino, 2018. "Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 160-172, January.
    15. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    16. Xiaodong Liu & Lung-Fei Lee, 2013. "Two-Stage Least Squares Estimation of Spatial Autoregressive Models with Endogenous Regressors and Many Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 734-753, August.
    17. Tianfa Xie & Ruiyuan Cao & Jiang Du, 2020. "Variable selection for spatial autoregressive models with a diverging number of parameters," Statistical Papers, Springer, vol. 61(3), pages 1125-1145, June.
    18. Myles Patton & Seamus McErlean, 2003. "Spatial Effects within the Agricultural Land Market in Northern Ireland," Journal of Agricultural Economics, Wiley Blackwell, vol. 54(1), pages 35-54, March.
    19. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Rejoinder to the discussions of “Spatial+: A novel approach to spatial confounding”," Biometrics, The International Biometric Society, vol. 78(4), pages 1309-1312, December.
    20. Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    21. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    22. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression," Environment and Planning A, , vol. 32(5), pages 871-890, May.
    23. Jianqing Fan & Jiancheng Jiang, 2007. "Rejoinder on: Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 471-478, December.
    24. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    25. Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
    26. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    27. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    28. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    29. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    30. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.
    31. Gupta, Abhimanyu, 2018. "Nonparametric specification testing via the trinity of tests," Journal of Econometrics, Elsevier, vol. 203(1), pages 169-185.
    32. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    2. Baltagi, Badi H. & Pirotte, Alain & Yang, Zhenlin, 2021. "Diagnostic tests for homoskedasticity in spatial cross-sectional or panel models," Journal of Econometrics, Elsevier, vol. 224(2), pages 245-270.
    3. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    4. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    5. Zhenlin Yang, 2018. "Bootstrap LM tests for higher-order spatial effects in spatial linear regression models," Empirical Economics, Springer, vol. 55(1), pages 35-68, August.
    6. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    7. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    8. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    9. Fei Jin & Lung‐fei Lee & Kai Yang, 2024. "Best linear and quadratic moments for spatial econometric models with an application to spatial interdependence patterns of employment growth in US counties," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 640-658, June.
    10. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    11. Abhimanyu Gupta & Xi Qu & Sorawoot Srisuma & Jiajun Zhang, 2025. "Inference on varying coefficients in spatial autoregressions," Papers 2502.03084, arXiv.org.
    12. Wei, Chuanhua & Guo, Shuang & Zhai, Shufen, 2017. "Statistical inference of partially linear varying coefficient spatial autoregressive models," Economic Modelling, Elsevier, vol. 64(C), pages 553-559.
    13. Hongjie Wei & Yan Sun, 2017. "Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(1), pages 113-128, January.
    14. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    15. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    16. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    17. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    18. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    19. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    20. Ruiqin Tian & Miaojie Xia & Dengke Xu, 2024. "Profile quasi-maximum likelihood estimation for semiparametric varying-coefficient spatial autoregressive panel models with fixed effects," Statistical Papers, Springer, vol. 65(8), pages 5109-5143, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00944-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.