IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p341-356.html
   My bibliography  Save this article

Varying Index Coefficient Models

Author

Listed:
  • Shujie Ma
  • Peter X.-K. Song

Abstract

It has been a long history of using interactions in regression analysis to investigate alterations in covariate-effects on response variables. In this article, we aim to address two kinds of new challenges arising from the inclusion of such high-order effects in the regression model for complex data. The first kind concerns a situation where interaction effects of individual covariates are weak but those of combined covariates are strong, and the other kind pertains to the presence of nonlinear interactive effects directed by low-effect covariates. We propose a new class of semiparametric models with varying index coefficients, which enables us to model and assess nonlinear interaction effects between grouped covariates on the response variable. As a result, most of the existing semiparametric regression models are special cases of our proposed models. We develop a numerically stable and computationally fast estimation procedure using both profile least squares method and local fitting. We establish both estimation consistency and asymptotic normality for the proposed estimators of index coefficients as well as the oracle property for the nonparametric function estimator. In addition, a generalized likelihood ratio test is provided to test for the existence of interaction effects or the existence of nonlinear interaction effects. Our models and estimation methods are illustrated by simulation studies, and by an analysis of child growth data to evaluate alterations in growth rates incurred by mother's exposures to endocrine disrupting compounds during pregnancy. Supplementary materials for this article are available online.

Suggested Citation

  • Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:341-356
    DOI: 10.1080/01621459.2014.903185
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.903185
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.903185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    2. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    3. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    4. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    5. Jianqing Fan & Jiancheng Jiang, 2007. "Rejoinder on: Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 471-478, December.
    6. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    7. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andolfatto, David & Martin, Fernando M. & Zhang, Shengxing, 2017. "Rehypothecation and liquidity," European Economic Review, Elsevier, vol. 100(C), pages 488-505.
    2. Christoph Breunig, 2018. "Varying Random Coefficient Models," Papers 1804.03110, arXiv.org, revised Aug 2020.
    3. Li, Kangqiang & Tang, Songqiao & Zhang, Lixin, 2022. "Robust parameter estimation of regression models under weakened moment assumptions," Statistics & Probability Letters, Elsevier, vol. 191(C).
    4. Xiaoqi Zhang & Yi Chen & Yi Yao, 2021. "Dynamic information asymmetry in micro health insurance: implications for sustainability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(3), pages 468-507, July.
    5. Zhu, Hanbing & Zhang, Yuanyuan & Li, Yehua & Lian, Heng, 2023. "Semiparametric function-on-function quantile regression model with dynamic single-index interactions," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
    7. Gao, Zhikun & Tang, Yanlin & Wang, Huixia Judy & Wu, Guangying K. & Lin, Jeff, 2020. "Automatic identification of curve shapes with applications to ultrasonic vocalization," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    8. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    9. Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    10. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-34, June.
    11. Zhou, Ling & Lin, Huazhen & Chen, Kani & Liang, Hua, 2019. "Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models," Journal of Econometrics, Elsevier, vol. 213(2), pages 593-607.
    12. Zhou, Fei & Ren, Jie & Ma, Shuangge & Wu, Cen, 2023. "The Bayesian regularized quantile varying coefficient model," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    13. Breunig, Christoph, 2021. "Varying random coefficient models," Journal of Econometrics, Elsevier, vol. 221(2), pages 381-408.
    14. Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.
    15. Wang, Taining & Henderson, Daniel J., 2022. "Estimation of a varying coefficient, fixed-effects Cobb–Douglas production function in levels," Economics Letters, Elsevier, vol. 213(C).
    16. Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks," Monash Econometrics and Business Statistics Working Papers 21/23, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
    2. Jialiang Li & Chao Huang & Zhub Hongtu, 2017. "A Functional Varying-Coefficient Single-Index Model for Functional Response Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1169-1181, July.
    3. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    4. Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
    5. Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
    6. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    7. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    8. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    9. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
    10. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    11. Li, Degui & Simar, Léopold & Zelenyuk, Valentin, 2016. "Generalized nonparametric smoothing with mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 424-444.
    12. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    13. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    14. Minggen Lu, 2018. "Spline-based quasi-likelihood estimation of mixed Poisson regression with single-index models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 1-17, January.
    15. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    16. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    17. Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
    18. Zhensheng Huang, 2011. "Statistical estimation in partially linear single-index models with error-prone linear covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 339-350.
    19. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    20. Teresa D. Harrison & Daniel J. Henderson & Deniz Ozabaci & Christopher A. Laincz, 2023. "Does one size fit all in the non‐profit donation production function?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 373-402, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:341-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.