IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-045.html
   My bibliography  Save this paper

Additive models: Extensions and related models

Author

Listed:
  • Mammen, Enno
  • Park, Byeong U.
  • Schienle, Melanie

Abstract

We give an overview over smooth back tting type estimators in additive models. Moreover we illustrate their wide applicability in models closely related to additive models such as nonparametric regression with dependent error variables where the errors can be transformed to white noise by a linear transformation, nonparametric regression with repeatedly measured data, nonparametric panels with fixed effects, simultaneous nonparametric equation models, and non- and semiparametric autoregression and GARCH-models. We also discuss extensions to varying coeffcient models, additive models with missing observations, and the case of nonstationary covariates.

Suggested Citation

  • Mammen, Enno & Park, Byeong U. & Schienle, Melanie, 2012. "Additive models: Extensions and related models," SFB 649 Discussion Papers 2012-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-045
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79587/1/720878993.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    2. Linton, Oliver B. & Mammen, Enno, 2008. "Nonparametric transformation to white noise," Journal of Econometrics, Elsevier, vol. 142(1), pages 241-264, January.
    3. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    5. Matthias R. Fengler & Wolfgang K. Härdle & Enno Mammen, 0. "A semiparametric factor model for implied volatility surface dynamics," Journal of Financial Econometrics, Oxford University Press, vol. 5(2), pages 189-218.
    6. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    7. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    8. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    9. Jianqing Fan & Jiancheng Jiang, 2007. "Rejoinder on: Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 471-478, December.
    10. Raymond J. Carroll & Arnab Maity & Enno Mammen & Kyusang Yu, 2009. "Nonparametric additive regression for repeatedly measured data," Biometrika, Biometrika Trust, vol. 96(2), pages 383-398.
    11. Mammen, Enno & Støve, Bård & Tjøstheim, Dag, 2009. "Nonparametric Additive Models For Panels Of Time Series," Econometric Theory, Cambridge University Press, vol. 25(2), pages 442-481, April.
    12. Göran Kauermann & J. D. Opsomer, 2003. "Local Likelihood Estimation in Generalized Additive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 317-337, June.
    13. Schick, Anton, 1996. "Root-n-consistent and efficient estimation in semiparametric additive regression models," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 45-51, September.
    14. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    15. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2010. "Nonparametric regression with nonparametrically generated covariates," SFB 649 Discussion Papers 2010-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    17. Oliver Linton & Jens Perch Nielsen & Søren Feodor Nielsen, 2009. "Non-parametric regression with a latent time series," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 187-207, July.
    18. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    19. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    22. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    23. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    24. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    25. Enno Mammen, 2003. "Generalised structured models," Biometrika, Biometrika Trust, vol. 90(3), pages 551-566, September.
    26. Lu, Zudi & Lundervold, Arvid & Tjøstheim, Dag & Yao, Qiwei, 2007. "Exploring spatial nonlinearity using additive approximation," LSE Research Online Documents on Economics 5401, London School of Economics and Political Science, LSE Library.
    27. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    28. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    29. Jens Perch Nielsen & Stefan Sperlich, 2005. "Smooth backfitting in practice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 43-61, February.
    30. Stefan Hoderlein & Enno Mammen & Kyusang Yu, 2011. "Non‐parametric models in binary choice fixed effects panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 351-367, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz Ozabaci & Daniel Henderson, 2015. "Additive kernel estimates of returns to schooling," Empirical Economics, Springer, vol. 48(1), pages 227-251, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2012-045 is not listed on IDEAS
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    4. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    5. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    6. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    7. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    8. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    9. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    11. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    12. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    13. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    14. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    15. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    16. Su, Liangjun & Ullah, Aman, 2008. "Local polynomial estimation of nonparametric simultaneous equations models," Journal of Econometrics, Elsevier, vol. 144(1), pages 193-218, May.
    17. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    18. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    19. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    20. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    21. Joel L. Horowitz, 2013. "Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter," CeMMAP working papers 30/13, Institute for Fiscal Studies.

    More about this item

    Keywords

    smooth backfi tting; additive models;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.