IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v133y2018icp65-70.html
   My bibliography  Save this article

A nonparametric test for covariate-adjusted models

Author

Listed:
  • Zhao, Jingxin
  • Xie, Chuanlong

Abstract

This paper provides a nonparametric test for covariate-adjusted models. The proposed test statistic, obtained by using the adjusted response and predictors, has the same limit distribution as when the response and predictors are observed directly.

Suggested Citation

  • Zhao, Jingxin & Xie, Chuanlong, 2018. "A nonparametric test for covariate-adjusted models," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 65-70.
  • Handle: RePEc:eee:stapro:v:133:y:2018:i:c:p:65-70
    DOI: 10.1016/j.spl.2017.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217303188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jun & Gai, Yujie & Wu, Ping, 2013. "Estimation in linear regression models with measurement errors subject to single-indexed distortion," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 103-120.
    2. Sentürk, Damla & Nguyen, Danh V., 2009. "Asymptotic properties of covariate-adjusted regression with correlated errors," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1175-1180, May.
    3. Zhang, Jun & Li, Gaorong & Feng, Zhenghui, 2015. "Checking the adequacy for a distortion errors-in-variables parametric regression model," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 52-64.
    4. Zhang, Jun & Zhu, Li-Xing & Liang, Hua, 2012. "Nonlinear models with measurement errors subject to single-indexed distortion," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 1-23.
    5. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.
    6. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    7. Jun Zhang & Yao Yu & Li-Xing Zhu & Hua Liang, 2013. "Partial linear single index models with distortion measurement errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 237-267, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Junpeng Zhu & Yan Zhou & Xia Cui & Tao Lu, 2020. "Multiplicative regression models with distortion measurement errors," Statistical Papers, Springer, vol. 61(5), pages 2031-2057, October.
    2. Jun Zhang & Yiping Yang & Gaorong Li, 2020. "Logarithmic calibration for multiplicative distortion measurement errors regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 462-488, November.
    3. Dai, Shuang & Huang, Zhensheng, 2020. "Nonparametric inference for covariate-adjusted model," Statistics & Probability Letters, Elsevier, vol. 162(C).
    4. Yingli Pan & Zhan Liu & Guangyu Song, 2021. "Outlier detection under a covariate-adjusted exponential regression model with censored data," Computational Statistics, Springer, vol. 36(2), pages 961-976, June.
    5. Jun Zhang, 2021. "Estimation and variable selection for partial linear single-index distortion measurement errors models," Statistical Papers, Springer, vol. 62(2), pages 887-913, April.
    6. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    7. Zhenghui Feng & Jun Zhang & Qian Chen, 2020. "Statistical inference for linear regression models with additive distortion measurement errors," Statistical Papers, Springer, vol. 61(6), pages 2483-2509, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun & Li, Gaorong & Feng, Zhenghui, 2015. "Checking the adequacy for a distortion errors-in-variables parametric regression model," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 52-64.
    2. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    3. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.
    4. Zhihua Sun & Dongshan Luo & Xiaohua Zhou & Qingzhao Zhang, 2021. "Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable," Statistical Papers, Springer, vol. 62(4), pages 1723-1751, August.
    5. Dai, Shuang & Huang, Zhensheng, 2020. "Nonparametric inference for covariate-adjusted model," Statistics & Probability Letters, Elsevier, vol. 162(C).
    6. Pantelis Kalaitzidakis & Theofanis P. Mamuneas & Thanasis Stengos, 2008. "The Contribution of Pollution to Productivity Growth," Working Paper series 06_08, Rimini Centre for Economic Analysis.
    7. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    9. Temel, Tugrul T., 2001. "A Nonparametric Hypothesis Test Via The Bootstrap Resampling," 2001 Annual meeting, August 5-8, Chicago, IL 20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. E. Zacharias & T. Stengos, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386.
    11. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    12. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    13. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    14. Hans R.A. Koster & Jan Rouwendal, 2012. "The Impact Of Mixed Land Use On Residential Property Values," Journal of Regional Science, Wiley Blackwell, vol. 52(5), pages 733-761, December.
    15. Song, Weixing, 2008. "Model checking in errors-in-variables regression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2406-2443, November.
    16. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    17. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    18. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Biedermann, Stefanie & Dette, Holger, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," Technical Reports 2000,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Zhang, Chunming & Dette, Holger, 2004. "A power comparison between nonparametric regression tests," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 289-301, February.
    21. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:133:y:2018:i:c:p:65-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.