IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v189y2022ics0047259x21001925.html
   My bibliography  Save this article

Level set and density estimation on manifolds

Author

Listed:
  • Cholaquidis, Alejandro
  • Fraiman, Ricardo
  • Moreno, Leonardo

Abstract

We tackle the problem of the estimation of the level sets Lf(λ) of the density f of a random vector X supported on a smooth manifold M⊂Rd, from an iid sample of X. To do that we introduce a kernel-based estimator fˆn,h, which is a slightly modified version of the one proposed in Rodríguez-Casal and Saavedra-Nieves (2014) and proves its a.s. uniform convergence to f. Then, we propose two estimators of Lf(λ), the first one is a plug-in: Lfˆn,h(λ), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if Lf(λ) does not meet the boundary of M. While the second one assumes that Lf(λ) is r-convex, and is estimated by means of the r-convex hull of Lfˆn,h(λ). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds.

Suggested Citation

  • Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001925
    DOI: 10.1016/j.jmva.2021.104925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    2. Delicado, Pedro, 2001. "Another Look at Principal Curves and Surfaces," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 84-116, April.
    3. Baíllo, Amparo & Cuesta-Albertos, Juan A. & Cuevas, Antonio, 2001. "Convergence rates in nonparametric estimation of level sets," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 27-35, May.
    4. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    5. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 411-417, December.
    6. Ilya S. Molchanov, 1998. "A Limit Theorem for Solutions of Inequalities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 235-242, March.
    7. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    2. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    3. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    4. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," DES - Working Papers. Statistics and Econometrics. WS ws032806, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    6. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 411-417, December.
    7. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Cho, Min Ho & Kurtek, Sebastian & Bharath, Karthik, 2022. "Tangent functional canonical correlation analysis for densities and shapes, with applications to multimodal imaging data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Kaido, Hiroaki & Molinari, Francesca & Stoye, Jörg, 2022. "Constraint Qualifications In Partial Identification," Econometric Theory, Cambridge University Press, vol. 38(3), pages 596-619, June.
    11. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    13. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    16. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    17. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    18. Victor Chernozhukov & Emre Kocatulum & Konrad Menzel, 2015. "Inference on sets in finance," Quantitative Economics, Econometric Society, vol. 6(2), pages 309-358, July.
    19. Bettache, Nayel & Butucea, Cristina & Sorba, Marianne, 2022. "Fast nonasymptotic testing and support recovery for large sparse Toeplitz covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    20. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.