IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v110y2016icp18-24.html
   My bibliography  Save this article

Laplace mixture autoregressive models

Author

Listed:
  • Nguyen, Hien D.
  • McLachlan, Geoffrey J.
  • Ullmann, Jeremy F.P.
  • Janke, Andrew L.

Abstract

Autoregressive (AR) models are an important tool in the study of time series data. However, the standard AR model only allows for unimodal marginal and conditional densities, and cannot capture conditional heteroscedasticity. Previously, the Gaussian mixture AR (GMAR) model was considered to remedy these shortcomings by using a Gaussian mixture conditional model. We introduce the Laplace mixture (LMAR) model that utilizes a Laplace mixture conditional model, as an alternative to the GMAR model. We characterize the LMAR model and provide conditions for stationarity. An MM (minorization–maximization) algorithm is then proposed for maximum pseudolikelihood (MPL) estimation of an LMAR model. Conditions for asymptotic inference and a rule for model selection for the MPL estimator are considered. An example analysis of data arising from the calcium imaging of a zebrafish brain is performed.

Suggested Citation

  • Nguyen, Hien D. & McLachlan, Geoffrey J. & Ullmann, Jeremy F.P. & Janke, Andrew L., 2016. "Laplace mixture autoregressive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 18-24.
  • Handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:18-24
    DOI: 10.1016/j.spl.2015.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215300110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    2. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    3. Small, Kenneth A. & Ng, Chen Feng, 2014. "Optimizing road capacity and type," Economics of Transportation, Elsevier, vol. 3(2), pages 145-157.
    4. Song, Weixing & Yao, Weixin & Xing, Yanru, 2014. "Robust mixture regression model fitting by Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 128-137.
    5. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arifatus Solikhah & Heri Kuswanto & Nur Iriawan & Kartika Fithriasari, 2021. "Fisher’s z Distribution-Based Mixture Autoregressive Model," Econometrics, MDPI, vol. 9(3), pages 1-35, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sugasawa, Shonosuke & Kobayashi, Genya, 2022. "Robust fitting of mixture models using weighted complete estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Linear mixed models with marginally symmetric nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 151-169.
    3. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    4. Kang-Ping Lu & Shao-Tung Chang, 2022. "Robust Switching Regressions Using the Laplace Distribution," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    5. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Maximum likelihood estimation of triangular and polygonal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 23-36.
    6. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    7. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    9. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    10. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
    11. Song, Song & Ritov, Ya’acov & Härdle, Wolfgang K., 2012. "Bootstrap confidence bands and partial linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 244-262.
    12. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    13. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    14. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    15. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    16. Ioannis Kalogridis, 2022. "Asymptotics for M-type smoothing splines with non-smooth objective functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 373-389, June.
    17. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    19. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    20. Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org, revised Jan 2025.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:18-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.