IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i1d10.1007_s11009-023-10005-6.html
   My bibliography  Save this article

Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient

Author

Listed:
  • Xinghui Wang

    (Anhui University
    Hefei University of Technology)

  • Wenjing Geng

    (Anhui University)

  • Ruidong Han

    (Renmin University of China)

  • Qifa Xu

    (Hefei University of Technology)

Abstract

In this paper, we consider a first-order autoregressive process with a general autoregressive coefficient. Asymptotic behaviors of an M-estimator of the autoregressive coefficient are established for the nearly stationary and mildly explosive cases, respectively. The rate of convergence of the robust estimators for the two cases are provided. The results extend ones for the least squares and least absolute deviation estimators to the robust estimator under the weaker initial conditions in the literature. Some simulations are carried out to assess the performance of our procedure.

Suggested Citation

  • Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10005-6
    DOI: 10.1007/s11009-023-10005-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10005-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10005-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
    2. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    3. Aue, Alexander & Horváth, Lajos, 2007. "A Limit Theorem For Mildly Explosive Autoregression With Stable Errors," Econometric Theory, Cambridge University Press, vol. 23(2), pages 201-220, April.
    4. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    5. Zhou, Zhiyong & Lin, Zhengyan, 2014. "Asymptotic theory for LAD estimation of moderate deviations from a unit root," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 25-32.
    6. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    7. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nannan Ma & Hailin Sang & Guangyu Yang, 2023. "Least absolute deviation estimation for AR(1) processes with roots close to unity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 799-832, October.
    2. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    3. Zhou, Zhiyong & Lin, Zhengyan, 2014. "Asymptotic theory for LAD estimation of moderate deviations from a unit root," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 25-32.
    4. Magdalinos, Tassos, 2012. "Mildly explosive autoregression under weak and strong dependence," Journal of Econometrics, Elsevier, vol. 169(2), pages 179-187.
    5. Marie Badreau & Frédéric Proïa, 2023. "Consistency and asymptotic normality in a class of nearly unstable processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 619-641, October.
    6. Tassos Magdalinos, 2008. "Mildly explosive autoregression under weak and strong dependence," Discussion Papers 08/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    7. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    8. Patrik Guggenberger, "undated". "Asymptotics for Stationary Very Nearly Unit Root Processes (joint with D.W.K. Andrews), this version November 2006," UCLA Economics Online Papers 402, UCLA Department of Economics.
    9. Yabe, Ryota, 2017. "Asymptotic distribution of the conditional-sum-of-squares estimator under moderate deviation from a unit root in MA(1)," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 220-226.
    10. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    11. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    12. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    13. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    14. Donald W. K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for stationary very nearly unit root processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 203-212, January.
    15. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    16. Richard A. Davis & William T. M. Dunsmuir, 1997. "Least Absolute Deviation Estimation for Regression with ARMA Errors," Journal of Theoretical Probability, Springer, vol. 10(2), pages 481-497, April.
    17. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    18. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    19. Bailey, N. & Giraitis, L., 2013. "Weak convergence in the near unit root setting," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1411-1415.
    20. Miao, Yu & Yin, Qing, 2024. "Cramér’s moderate deviations for the LS estimator of the autoregressive processes in the neighborhood of the unit root," Statistics & Probability Letters, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10005-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.