IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i3p27-d584757.html
   My bibliography  Save this article

Fisher’s z Distribution-Based Mixture Autoregressive Model

Author

Listed:
  • Arifatus Solikhah

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
    Badan Pusat Statistik (BPS—Statistics Indonesia), Jakarta 10710, Indonesia)

  • Heri Kuswanto

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Nur Iriawan

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Kartika Fithriasari

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

Abstract

We generalize the Gaussian Mixture Autoregressive (GMAR) model to the Fisher’s z Mixture Autoregressive (ZMAR) model for modeling nonlinear time series. The model consists of a mixture of K -component Fisher’s z autoregressive models with the mixing proportions changing over time. This model can capture time series with both heteroskedasticity and multimodal conditional distribution, using Fisher’s z distribution as an innovation in the MAR model. The ZMAR model is classified as nonlinearity in the level (or mode) model because the mode of the Fisher’s z distribution is stable in its location parameter, whether symmetric or asymmetric. Using the Markov Chain Monte Carlo (MCMC) algorithm, e.g., the No-U-Turn Sampler (NUTS), we conducted a simulation study to investigate the model performance compared to the GMAR model and Student t Mixture Autoregressive (TMAR) model. The models are applied to the daily IBM stock prices and the monthly Brent crude oil prices. The results show that the proposed model outperforms the existing ones, as indicated by the Pareto-Smoothed Important Sampling Leave-One-Out cross-validation (PSIS-LOO) minimum criterion.

Suggested Citation

  • Arifatus Solikhah & Heri Kuswanto & Nur Iriawan & Kartika Fithriasari, 2021. "Fisher’s z Distribution-Based Mixture Autoregressive Model," Econometrics, MDPI, vol. 9(3), pages 1-35, June.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:3:p:27-:d:584757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/3/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/3/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    3. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    4. C. S. Wong & W. S. Chan & P. L. Kam, 2009. "A Student t-mixture autoregressive model with applications to heavy-tailed financial data," Biometrika, Biometrika Trust, vol. 96(3), pages 751-760.
    5. Barry W. Brown & Floyd M. Spears & Lawrence B. Levy, 2002. "The log F: A Distribution for All Seasons," Computational Statistics, Springer, vol. 17(1), pages 47-58, March.
    6. G. Huerta & M. West, 1999. "Priors and component structures in autoregressive time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 881-899.
    7. Nguyen, Hien D. & McLachlan, Geoffrey J. & Ullmann, Jeremy F.P. & Janke, Andrew L., 2016. "Laplace mixture autoregressive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 18-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Miroshnichenko & Elena Iakovleva & Natalia Voronova, 2022. "Banking Sector Profitability: Does Household Income Matter?," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    2. Irwan Susanto & Nur Iriawan & Heri Kuswanto, 2022. "On the Bayesian Mixture of Generalized Linear Models with Gamma-Distributed Responses," Econometrics, MDPI, vol. 10(4), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    2. Tang, Yongqiang & Ghosal, Subhashis, 2007. "A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4424-4437, May.
    3. Paul Doukhan & Konstantinos Fokianos & Joseph Rynkiewicz, 2021. "Mixtures of Nonlinear Poisson Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 107-135, January.
    4. Prado, Raquel, 2013. "Sequential estimation of mixtures of structured autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 58-70.
    5. Wong, C.S., 2013. "On a constrained mixture vector autoregressive model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 19-28.
    6. Wong, C.S., 2011. "Modeling Hong Kong’s stock index with the Student t-mixture autoregressive model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1334-1343.
    7. Manuela Goretti, 2005. "The Brazilian currency turmoil of 2002: a nonlinear analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(4), pages 289-306.
    8. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    9. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    10. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    11. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    12. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    13. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    14. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    15. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    16. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2013. "Discordant city employment cycles," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 367-384.
    17. Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
    18. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    19. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    20. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:3:p:27-:d:584757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.