IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000656.html
   My bibliography  Save this article

Density analysis for coupled forward–backward SDEs with non-Lipschitz drifts and applications

Author

Listed:
  • Likibi Pellat, Rhoss
  • Menoukeu Pamen, Olivier

Abstract

We explore the existence of a continuous marginal law with respect to the Lebesgue measure for each component (X,Y,Z) of the solution to coupled quadratic forward–backward stochastic differential equations (QFBSDEs) for which the drift coefficient of the forward component is either bounded and measurable or Hölder continuous. Our approach relies on a combination of the existence of a weak decoupling field (see Delarue and Guatteri, 2006), the integration with respect to space time local time (see Eisenbaum, 2006), the analysis of the backward Kolmogorov equation associated to the forward component along with an Itô-Tanaka trick (see Flandoli et al., 2009). The framework of this paper is beyond all existing papers on density analysis for Markovian BSDEs and constitutes a major refinement of the existing results. We also derive a comonotonicity theorem for the control variable in this frame and thus extending the works (Chen et al., 2005; Dos Rei and Dos Rei 2013).

Suggested Citation

  • Likibi Pellat, Rhoss & Menoukeu Pamen, Olivier, 2024. "Density analysis for coupled forward–backward SDEs with non-Lipschitz drifts and applications," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000656
    DOI: 10.1016/j.spa.2024.104359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zengjing & Kulperger, Reg & Wei, Gang, 2005. "A comonotonic theorem for BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 41-54, January.
    2. Eisenbaum, Nathalie, 2006. "Local time-space stochastic calculus for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 757-778, May.
    3. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Representation formulas for Malliavin derivatives of diffusion processes," Finance and Stochastics, Springer, vol. 9(3), pages 349-367, July.
    4. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    5. Bally, Vlad & Caramellino, Lucia, 2011. "Riesz transform and integration by parts formulas for random variables," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1332-1355, June.
    6. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    7. Imkeller, Peter & Dos Reis, Gonçalo, 2010. "Path regularity and explicit convergence rate for BSDE with truncated quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 348-379, March.
    8. Delarue, F. & Guatteri, G., 2006. "Weak existence and uniqueness for forward-backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1712-1742, December.
    9. D. Baños & T. Meyer-Brandis & F. Proske & S. Duedahl, 2017. "Computing deltas without derivatives," Finance and Stochastics, Springer, vol. 21(2), pages 509-549, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Menoukeu-Pamen & Ludovic Tangpi, 2023. "Maximum Principle for Stochastic Control of SDEs with Measurable Drifts," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1195-1228, June.
    2. Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969, arXiv.org.
    3. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    4. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    5. Giuseppe Benedetti & Luciano Campi, 2013. "Utility indifference valuation for non-smooth payoffs with an application to power derivatives," Papers 1307.4591, arXiv.org.
    6. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    7. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    8. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    9. Santiago Moreno-Bromberg & Traian Pirvu & Anthony R'eveillac, 2011. "CRRA Utility Maximization under Risk Constraints," Papers 1106.1702, arXiv.org, revised Mar 2012.
    10. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    11. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    12. Johannes Gerer & Gregor Dorfleitner, 2016. "A Note On Utility Indifference Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-17, September.
    13. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    14. Covello, D. & Santacroce, M., 2010. "Power utility maximization under partial information: Some convergence results," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2016-2036, September.
    15. Benedetti, Giuseppe & Campi, Luciano, 2016. "Utility indifference valuation for non-smooth payoffs with an application to power derivatives," LSE Research Online Documents on Economics 63016, London School of Economics and Political Science, LSE Library.
    16. Jana Bielagk & Arnaud Lionnet & Goncalo Dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Papers 1511.04218, arXiv.org, revised Feb 2017.
    17. Balter, Anne G. & Pelsser, Antoon, 2020. "Pricing and hedging in incomplete markets with model uncertainty," European Journal of Operational Research, Elsevier, vol. 282(3), pages 911-925.
    18. Vicky Henderson & Gechun Liang, 2011. "A Multidimensional Exponential Utility Indifference Pricing Model with Applications to Counterparty Risk," Papers 1111.3856, arXiv.org, revised Sep 2015.
    19. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    20. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.