IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i3d10.1007_s10957-023-02209-0.html
   My bibliography  Save this article

Maximum Principle for Stochastic Control of SDEs with Measurable Drifts

Author

Listed:
  • Olivier Menoukeu-Pamen

    (University of Liverpool
    African Institute for Mathematical Sciences)

  • Ludovic Tangpi

    (Princeton University)

Abstract

In this paper, we consider stochastic optimal control of systems driven by stochastic differential equations with irregular drift coefficient. We establish a necessary and sufficient stochastic maximum principle. To achieve this, we first derive an explicit representation of the first variation process (in the Sobolev sense) of the controlled diffusion. Since the drift coefficient is not smooth, the representation is given in terms of the local time of the state process. Then we construct a sequence of optimal control problems with smooth coefficients by an approximation argument. Finally, we use Ekeland’s variational principle to obtain an approximating adjoint process from which we derive the maximum principle by passing to the limit. The work is notably motivated by the optimal consumption problem of investors paying wealth tax.

Suggested Citation

  • Olivier Menoukeu-Pamen & Ludovic Tangpi, 2023. "Maximum Principle for Stochastic Control of SDEs with Measurable Drifts," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1195-1228, June.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02209-0
    DOI: 10.1007/s10957-023-02209-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02209-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02209-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eisenbaum, Nathalie, 2006. "Local time-space stochastic calculus for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 757-778, May.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Luo, Peng & Menoukeu-Pamen, Olivier & Tangpi, Ludovic, 2022. "Strong solutions of forward–backward stochastic differential equations with measurable coefficients," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 1-22.
    4. repec:dau:papers:123456789/9561 is not listed on IDEAS
    5. Wendell H. Fleming & Thaleia Zariphopoulou, 1991. "An Optimal Investment/Consumption Model with Borrowing," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 802-822, November.
    6. Imen Ben Tahar & Nizar Touzi & Mete H. Soner, 2007. "The Dynamic Programming Equation for the Problem of Optimal Investment Under Capital Gains Taxes," Post-Print hal-00703103, HAL.
    7. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    8. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    9. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    10. Gregor Heyne & Michael Kupper & Ludovic Tangpi, 2016. "Portfolio Optimization Under Nonlinear Utility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    11. D. Baños & T. Meyer-Brandis & F. Proske & S. Duedahl, 2017. "Computing deltas without derivatives," Finance and Stochastics, Springer, vol. 21(2), pages 509-549, April.
    12. N'Zi, Modeste & Ouknine, Youssef & Sulem, Agnès, 2006. "Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1319-1339, September.
    13. Olivier Menoukeu Pamen, 2017. "Maximum Principles of Markov Regime-Switching Forward–Backward Stochastic Differential Equations with Jumps and Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 373-410, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
    2. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    3. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    4. Markus Mocha & Nicholas Westray, 2011. "The Stability of the Constrained Utility Maximization Problem - A BSDE Approach," Papers 1107.0190, arXiv.org.
    5. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    6. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    7. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    8. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    9. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    10. Roche, Hervé & Tompaidis, Stathis & Yang, Chunyu, 2013. "Why does junior put all his eggs in one basket? A potential rational explanation for holding concentrated portfolios," Journal of Financial Economics, Elsevier, vol. 109(3), pages 775-796.
    11. Haluk Yener & Fuat Can Beylunioglu, 2017. "Outperforming A Stochastic Benchmark Under Borrowing And Rectangular Constraints," Working Papers 1701, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    12. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, March.
    13. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    14. Baojun Bian & Xinfu Chen & Min Dai & Shuaijie Qian, 2021. "Penalty method for portfolio selection with capital gains tax," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1013-1055, July.
    15. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    16. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    17. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    18. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    19. Wahid Faidi & Hanen Mezghanni & Mohamed Mnif, 2019. "Expected Utility Maximization Problem Under State Constraints and Model Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1123-1152, December.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02209-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.