IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.02289.html
   My bibliography  Save this paper

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior

Author

Listed:
  • Wing Fung Chong
  • Ying Hu
  • Gechun Liang
  • Thaleia Zariphopoulou

Abstract

Using elements from the theory of ergodic backward stochastic differential equations (BSDE), we study the behavior of forward entropic risk measures. We provide their general representation results (via both BSDE and convex duality) and examine their behavior for risk positions of long maturities. We show that forward entropic risk measures converge to some constant exponentially fast. We also compare them with their classical counterparts and derive a parity result.

Suggested Citation

  • Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2016. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Papers 1607.02289, arXiv.org, revised Apr 2017.
  • Handle: RePEc:arx:papers:1607.02289
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.02289
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2016. "Long time asymptotics for fully nonlinear Bellman equations: A backward SDE approach," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1932-1973.
    3. Gechun Liang & Thaleia Zariphopoulou, 2015. "Representation of homothetic forward performance processes in stochastic factor models via ergodic and infinite horizon BSDE," Papers 1511.04863, arXiv.org, revised Nov 2016.
    4. Becherer, Dirk, 2003. "Rational hedging and valuation of integrated risks under constant absolute risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 1-28, August.
    5. Ying Hu & Gechun Liang & Shanjian Tang, 2017. "Utility maximization in constrained and unbounded financial markets: Applications to indifference valuation, regime switching, consumption and Epstein-Zin recursive utility," Papers 1707.00199, arXiv.org, revised Oct 2024.
    6. Debussche, Arnaud & Hu, Ying & Tessitore, Gianmario, 2011. "Ergodic BSDEs under weak dissipative assumptions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 407-426, March.
    7. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    8. Jocelyne Bion-Nadal, 2008. "Dynamic risk measures: Time consistency and risk measures from BMO martingales," Finance and Stochastics, Springer, vol. 12(2), pages 219-244, April.
    9. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    10. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    11. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    12. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    14. Susanne Klöppel & Martin Schweizer, 2007. "Dynamic Indifference Valuation Via Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 599-627, October.
    15. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    16. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    17. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    18. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    19. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    22. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    23. Sergey Nadtochiy & Michael Tehranchi, 2017. "Optimal Investment For All Time Horizons And Martin Boundary Of Space-Time Diffusions," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 438-470, April.
    24. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wing Fung Chong & Gechun Liang, 2024. "Robust forward investment and consumption under drift and volatility uncertainties: A randomization approach," Papers 2410.01378, arXiv.org.
    2. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    3. Moris S. Strub & Xun Yu Zhou, 2021. "Evolution of the Arrow–Pratt measure of risk-tolerance for predictable forward utility processes," Finance and Stochastics, Springer, vol. 25(2), pages 331-358, April.
    4. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    5. Gechun Liang & Yifan Sun & Thaleia Zariphopoulou, 2023. "Representation of forward performance criteria with random endowment via FBSDE and application to forward optimized certainty equivalent," Papers 2401.00103, arXiv.org.
    6. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    7. Wing Fung Chong & Gechun Liang, 2018. "Optimal investment and consumption with forward preferences and uncertain parameters," Papers 1807.01186, arXiv.org, revised Nov 2023.
    8. Xue Dong He & Moris S. Strub & Thaleia Zariphopoulou, 2021. "Forward rank‐dependent performance criteria: Time‐consistent investment under probability distortion," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 683-721, April.
    9. Xue Dong He & Moris S. Strub & Thaleia Zariphopoulou, 2019. "Forward Rank-Dependent Performance Criteria: Time-Consistent Investment Under Probability Distortion," Papers 1904.01745, arXiv.org.
    10. Ng, Kenneth Tsz Hin & Chong, Wing Fung, 2024. "Optimal investment in defined contribution pension schemes with forward utility preferences," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 192-211.
    11. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utilities and Mean-field games under relative performance concerns," Papers 2005.09461, arXiv.org, revised Sep 2020.
    12. Liu, Haibo & Tang, Qihe & Yuan, Zhongyi, 2021. "Indifference pricing of insurance-linked securities in a multi-period model," European Journal of Operational Research, Elsevier, vol. 289(2), pages 793-805.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    2. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    3. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    4. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    5. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    6. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    7. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    8. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    9. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    10. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    11. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    12. c{C}au{g}{i}n Ararat & Bar{i}c{s} Bilir & Elisa Mastrogiacomo, 2022. "Decomposable sums and their implications on naturally quasiconvex risk measures," Papers 2201.05686, arXiv.org.
    13. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    14. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Time-consistency of cash-subadditive risk measures," Papers 1512.03641, arXiv.org.
    15. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    16. Eduard Kromer & Ludger Overbeck, 2017. "DIFFERENTIABILITY OF BSVIEs AND DYNAMIC CAPITAL ALLOCATIONS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    17. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    18. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    19. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    20. Pelsser, Antoon & Salahnejhad Ghalehjooghi, Ahmad, 2016. "Time-consistent actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 97-112.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.02289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.