IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i2d10.1007_s00780-016-0321-3.html
   My bibliography  Save this article

Computing deltas without derivatives

Author

Listed:
  • D. Baños

    (University of Oslo)

  • T. Meyer-Brandis

    (University of Munich)

  • F. Proske

    (University of Oslo)

  • S. Duedahl

    (University of Oslo)

Abstract

A well-known application of Malliavin calculus in mathematical finance is the probabilistic representation of option price sensitivities, the so-called Greeks, as expectation functionals that do not involve the derivative of the payoff function. This allows numerically tractable computation of the Greeks even for discontinuous payoff functions. However, while the payoff function is allowed to be irregular, the coefficients of the underlying diffusion are required to be smooth in the existing literature, which for example already excludes simple regime-switching diffusion models. The aim of this article is to generalise this application of Malliavin calculus to Itô diffusions with irregular drift coefficients, where we focus here on the computation of the delta, which is the option price sensitivity with respect to the initial value of the underlying. To this end, we first show existence, Malliavin differentiability and (Sobolev) differentiability in the initial condition for strong solutions of Itô diffusions with drift coefficients that can be decomposed into the sum of a bounded, but merely measurable, and a Lipschitz part. Furthermore, we give explicit expressions for the corresponding Malliavin and Sobolev derivatives in terms of the local time of the diffusion, respectively. We then turn to the main objective of this article and analyse the existence and probabilistic representation of the corresponding deltas for European and path-dependent options. We conclude with a small simulation study of several regime-switching examples.

Suggested Citation

  • D. Baños & T. Meyer-Brandis & F. Proske & S. Duedahl, 2017. "Computing deltas without derivatives," Finance and Stochastics, Springer, vol. 21(2), pages 509-549, April.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:2:d:10.1007_s00780-016-0321-3
    DOI: 10.1007/s00780-016-0321-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-016-0321-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-016-0321-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudia Kluppelberg & Thilo Meyer-Brandis & Andrea Schmidt, 2010. "Electricity spot price modelling with a view towards extreme spike risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 963-974.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    3. Emmanuel Gobet, 2004. "Revisiting the Greeks for European and American Options," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 3, pages 53-71, World Scientific Publishing Co. Pte. Ltd..
    4. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    5. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    6. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    7. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    2. Olivier Menoukeu-Pamen & Ludovic Tangpi, 2023. "Maximum Principle for Stochastic Control of SDEs with Measurable Drifts," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1195-1228, June.
    3. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    2. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    3. Jazaerli, Samy & F. Saporito, Yuri, 2017. "Functional Itô calculus, path-dependence and the computation of Greeks," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3997-4028.
    4. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Kloeden Peter E. & Sanz-Chacón Carlos, 2011. "Efficient price sensitivity estimation of financial derivatives by weak derivatives," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 47-75, January.
    6. Samy Jazaerli & Yuri F. Saporito, 2013. "Functional Ito Calculus, Path-dependence and the Computation of Greeks," Papers 1311.3881, arXiv.org, revised Jun 2018.
    7. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    8. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    9. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    10. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    11. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    12. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    13. Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
    14. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    15. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    16. Lars Hansen & José Scheinkman, 2012. "Pricing growth-rate risk," Finance and Stochastics, Springer, vol. 16(1), pages 1-15, January.
    17. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    18. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    19. Privault, Nicolas & Wei, Xiao, 2004. "A Malliavin calculus approach to sensitivity analysis in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 679-690, December.
    20. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.

    More about this item

    Keywords

    Greeks; Delta; Option sensitivities; Malliavin calculus; Bismut–Elworthy–Li formula; Irregular diffusion coefficients; Strong solutions of stochastic differential equations; Relative L 2 $L^{2}$ -compactness;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:2:d:10.1007_s00780-016-0321-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.