IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i10p2016-2036.html
   My bibliography  Save this article

Power utility maximization under partial information: Some convergence results

Author

Listed:
  • Covello, D.
  • Santacroce, M.

Abstract

In this paper we consider the power utility maximization problem under partial information in a continuous semimartingale setting. Investors construct their strategies using the available information, which possibly may not even include the observation of the asset prices. Resorting to stochastic filtering, the problem is transformed into an equivalent one, which is formulated in terms of observable processes. The value process, related to the equivalent optimization problem, is then characterized as the unique bounded solution of a semimartingale backward stochastic differential equation (BSDE). This yields a unified characterization for the value process related to the power and exponential utility maximization problems, the latter arising as a particular case. The convergence of the corresponding optimal strategies is obtained by means of BSDEs. Finally, we study some particular cases where the value process admits an explicit expression.

Suggested Citation

  • Covello, D. & Santacroce, M., 2010. "Power utility maximization under partial information: Some convergence results," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2016-2036, September.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:2016-2036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00145-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huyên Pham, 2001. "Mean-Variance Hedging For Partially Observed Drift Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 263-284.
    2. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    3. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    4. Martin Schweizer, 1994. "Risk‐Minimizing Hedging Strategies Under Restricted Information," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 327-342, October.
    5. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    6. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    7. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE q‐OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556, October.
    8. Kohlmann, Michael & Niethammer, Christina R., 2007. "On convergence to the exponential utility problem," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1813-1834, December.
    9. Christian Bender & Christina Niethammer, 2008. "On q-optimal martingale measures in exponential Lévy models," Finance and Stochastics, Springer, vol. 12(3), pages 381-410, July.
    10. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    11. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Janke, 2016. "Utility Maximization and Indifference Value under Risk and Information Constraints for a Market with a Change Point," Papers 1610.08644, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    2. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    3. Michael Monoyios, 2010. "Utility-Based Valuation and Hedging of Basis Risk With Partial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 519-551.
    4. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    5. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    6. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    7. Masaaki Fujii & Akihiko Takahashi, 2015. "Quadratic-exponential growth BSDEs with Jumps and their Malliavin's Differentiability," Papers 1512.05924, arXiv.org, revised Sep 2017.
    8. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    9. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    10. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    11. Kim, Kon-Gun & Kim, Mun-Chol & O, Hun, 2022. "Local existence and uniqueness of solutions to quadratic BSDEs with weak monotonicity and general growth generators," Statistics & Probability Letters, Elsevier, vol. 186(C).
    12. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    13. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    14. Wahid Faidi, 2022. "Optimal investment and consumption under logarithmic utility and uncertainty model," Papers 2211.05367, arXiv.org, revised Jun 2024.
    15. Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
    16. B. Chikvinidze & M. Mania, 2014. "New Proofs of Some Results on Bounded Mean Oscillation Martingales Using Backward Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1213-1228, December.
    17. Vicky Henderson & Gechun Liang, 2011. "A Multidimensional Exponential Utility Indifference Pricing Model with Applications to Counterparty Risk," Papers 1111.3856, arXiv.org, revised Sep 2015.
    18. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    19. Thai Nguyen & Mitja Stadje, 2020. "Utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Mar 2024.
    20. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:2016-2036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.