IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i7p4444-4469.html
   My bibliography  Save this article

Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire

Author

Listed:
  • Mostovyi, Oleksii

Abstract

In an incomplete model, where under an appropriate numéraire, the stock price process is driven by a sigma-bounded semimartingale, we investigate the behavior of the expected utility maximization problem under small perturbations of the numéraire. We establish a quadratic approximation of the value function and a first-order expansion of the terminal wealth. Relying on a description of the base return process in terms of its semimartingale characteristics, we also construct wealth processes and nearly optimal strategies that allow for matching the primal value function up to the second order. We also link perturbations of the numéraire to distortions of the finite-variation part and martingale part of the stock price return and characterize the asymptotic expansions in terms of the risk-tolerance wealth process.

Suggested Citation

  • Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4444-4469
    DOI: 10.1016/j.spa.2020.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918304071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
    2. Michael Monoyios, 2012. "Malliavin calculus method for asymptotic expansion of dual control problems," Papers 1209.6497, arXiv.org, revised Oct 2013.
    3. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    4. Kasper Larsen & Oleksii Mostovyi & Gordan Žitković, 2018. "An expansion in the model space in the context of utility maximization," Finance and Stochastics, Springer, vol. 22(2), pages 297-326, April.
    5. Scott Robertson, 2017. "Pricing For Large Positions In Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 746-778, July.
    6. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    7. Koichiro Takaoka & Martin Schweizer, 2014. "A note on the condition of no unbounded profit with bounded risk," Finance and Stochastics, Springer, vol. 18(2), pages 393-405, April.
    8. Kardaras, Constantinos, 2013. "On the closure in the Emery topology of semimartingale wealth-process sets," LSE Research Online Documents on Economics 44996, London School of Economics and Political Science, LSE Library.
    9. Yuri Kabanov & Constantinos Kardaras & Shiqi Song, 2016. "No arbitrage of the first kind and local martingale numéraires," Finance and Stochastics, Springer, vol. 20(4), pages 1097-1108, October.
    10. Dmitry Kramkov & Mihai S^{{i}}rbu, 2006. "On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets," Papers math/0610224, arXiv.org.
    11. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    12. Christian Gourieroux & Jean Paul Laurent & Huyên Pham, 1998. "Mean‐Variance Hedging and Numéraire," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 179-200, July.
    13. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    14. Jan Kallsen, 2002. "Derivative pricing based on local utility maximization," Finance and Stochastics, Springer, vol. 6(1), pages 115-140.
    15. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    16. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    17. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2015. "Hedging with Small Uncertainty Aversion," Swiss Finance Institute Research Paper Series 15-19, Swiss Finance Institute, revised Apr 2017.
    18. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    19. Kardaras, Constantinos & Platen, Eckhard, 2011. "On the semimartingale property of discounted asset-price processes," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2678-2691, November.
    20. Paolo Guasoni & Scott Robertson, 2012. "Portfolios and risk premia for the long run," Papers 1203.1399, arXiv.org.
    21. Jean-Paul Laurent & Huyen Pham, 1999. "Dynamic programming and mean-variance hedging," Post-Print hal-03675953, HAL.
    22. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    23. Constantinos Kardaras, 2011. "On the closure in the Emery topology of semimartingale wealth-process sets," Papers 1108.0945, arXiv.org, revised Jul 2013.
    24. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Monoyios & Oleksii Mostovyi, 2022. "Stability of the Epstein-Zin problem," Papers 2208.09895, arXiv.org, revised Apr 2023.
    2. William Busching & Delphine Hintz & Oleksii Mostovyi & Alexey Pozdnyakov, 2022. "Fair pricing and hedging under small perturbations of the num\'eraire on a finite probability space," Papers 2208.09898, arXiv.org.
    3. Oleksii Mostovyi, 2020. "Stability of the indirect utility process," Papers 2002.09445, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    2. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    3. Kasper Larsen & Oleksii Mostovyi & Gordan Žitković, 2018. "An expansion in the model space in the context of utility maximization," Finance and Stochastics, Springer, vol. 22(2), pages 297-326, April.
    4. Daniel Bartl & Ariel Neufeld & Kyunghyun Park, 2023. "Sensitivity of robust optimization problems under drift and volatility uncertainty," Papers 2311.11248, arXiv.org.
    5. Kardaras, Constantinos, 2013. "On the closure in the Emery topology of semimartingale wealth-process sets," LSE Research Online Documents on Economics 44996, London School of Economics and Political Science, LSE Library.
    6. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    7. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio without NFLVR: existence, complete characterization, and duality," Papers 1807.06449, arXiv.org.
    8. Paolo Guasoni & Constantinos Kardaras & Scott Robertson & Hao Xing, 2014. "Abstract, classic, and explicit turnpikes," Finance and Stochastics, Springer, vol. 18(1), pages 75-114, January.
    9. Yuri Kabanov & Constantinos Kardaras & Shiqi Song, 2016. "No arbitrage of the first kind and local martingale numéraires," Finance and Stochastics, Springer, vol. 20(4), pages 1097-1108, October.
    10. Dániel Ágoston Bálint & Martin Schweizer, 2018. "Making No-Arbitrage Discounting-Invariant: A New FTAP Beyond NFLVR and NUPBR," Swiss Finance Institute Research Paper Series 18-23, Swiss Finance Institute, revised Mar 2018.
    11. Kasper Larsen & Oleksii Mostovyi & Gordan v{Z}itkovi'c, 2014. "An expansion in the model space in the context of utility maximization," Papers 1410.0946, arXiv.org, revised Aug 2016.
    12. Constantinos Kardaras, 2011. "On the closure in the Emery topology of semimartingale wealth-process sets," Papers 1108.0945, arXiv.org, revised Jul 2013.
    13. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    14. Huy N. Chau & Andrea Cosso & Claudio Fontana & Oleksii Mostovyi, 2015. "Optimal investment with intermediate consumption under no unbounded profit with bounded risk," Papers 1509.01672, arXiv.org, revised Jun 2017.
    15. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    16. Hyungbin Park & Heejun Yeo, 2022. "Dynamic and static fund separations and their stability for long-term optimal investments," Papers 2212.00391, arXiv.org, revised Mar 2023.
    17. Kramkov, D. & Sîrbu, M., 2007. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1606-1620, November.
    18. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    19. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    20. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4444-4469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.