IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v161y2023icp544-571.html
   My bibliography  Save this article

Fractal dimensions of the Rosenblatt process

Author

Listed:
  • Daw, Lara
  • Kerchev, George

Abstract

The paper concerns the image, level and sojourn time sets associated with sample paths of the Rosenblatt process. We obtain results regarding the Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the logarithmic and pixel densities. As a preliminary step we also establish the time inversion property of the Rosenblatt process, as well as some technical points regarding the distribution of Z.

Suggested Citation

  • Daw, Lara & Kerchev, George, 2023. "Fractal dimensions of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 544-571.
  • Handle: RePEc:eee:spapps:v:161:y:2023:i:c:p:544-571
    DOI: 10.1016/j.spa.2023.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    2. Xiao, Yimin, 1997. "Packing dimension of the image of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 379-387, May.
    3. Maejima, Makoto & Tudor, Ciprian A., 2013. "On the distribution of the Rosenblatt process," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1490-1495.
    4. Daw, Lara, 2021. "A uniform result for the dimension of fractional Brownian motion level sets," Statistics & Probability Letters, Elsevier, vol. 169(C).
    5. Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
    6. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    7. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Shuyang & Taqqu, Murad S., 2014. "Generalized Hermite processes, discrete chaos and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1710-1739.
    2. Ayache, Antoine, 2020. "Lower bound for local oscillations of Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4593-4607.
    3. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    4. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    5. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    6. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018. "A simple test on structural change in long-memory time series," Economics Letters, Elsevier, vol. 163(C), pages 90-94.
    7. Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 262-271.
    8. Xiao, Yimin, 2009. "A packing dimension theorem for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 88-97, January.
    9. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    10. Meerschaert, Mark M. & Xiao, Yimin, 2005. "Dimension results for sample paths of operator stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 55-75, January.
    11. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    12. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    13. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
    14. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.
    15. Kerchev, George & Nourdin, Ivan & Saksman, Eero & Viitasaari, Lauri, 2021. "Local times and sample path properties of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 498-522.
    16. Bardet, Jean-Marc & Tudor, Ciprian, 2014. "Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 1-16.
    17. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    18. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    19. Barakah Almarri & Xingtao Wang & Ahmed M. Elshenhab, 2022. "Controllability of Stochastic Delay Systems Driven by the Rosenblatt Process," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    20. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:161:y:2023:i:c:p:544-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.