IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v178y2024ics0304414924001832.html
   My bibliography  Save this article

Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos

Author

Listed:
  • Liu, Gi-Ren

Abstract

This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).

Suggested Citation

  • Liu, Gi-Ren, 2024. "Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001832
    DOI: 10.1016/j.spa.2024.104477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924001832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.