IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i2p265-269.html
   My bibliography  Save this article

Comments on: Extensions of some classical methods in change point analysis

Author

Listed:
  • Marie Hušková
  • Zuzana Prášková

Abstract

First of all, we would like to congratulate and to thank Lajos Horváth and Gregory Rice for providing an excellent overview of a recent development in the area of change point. This area is developing quite fast with many new procedures, many new theoretical results and many applications. We appreciate that the paper brings extension of existing empirical processes techniques to time series and numerical examples giving the performance for finite sample setups as well as demonstrations of the discussed methods on real data. In the following, we would like to make several remarks on the topics that were discussed in the paper only very briefly. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:265-269
    DOI: 10.1007/s11749-014-0373-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0373-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0373-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Lee, Chung-Bow, 1995. "Estimating the number of change points in a sequence of independent normal random variables," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 241-248, November.
    4. Fiteni, Inmaculada, 2002. "Robust Estimation Of Structural Break Points," Econometric Theory, Cambridge University Press, vol. 18(2), pages 349-386, April.
    5. Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
    6. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    7. Harchaoui, Z. & Lévy-Leduc, C., 2010. "Multiple Change-Point Estimation With a Total Variation Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1480-1493.
    8. Gilles Teyssière & Alan P. Kirman (ed.), 2007. "Long Memory in Economics," Springer Books, Springer, number 978-3-540-34625-8, February.
    9. Dehling, Herold & Fried, Roland, 2012. "Asymptotic distribution of two-sample empirical U-quantiles with applications to robust tests for shifts in location," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 124-140.
    10. P. Fryzlewicz & S. Subba Rao, 2014. "Multiple-change-point detection for auto-regressive conditional heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 903-924, November.
    11. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    12. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    13. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    14. Marie Hušková & Claudia Kirch, 2010. "A note on studentized confidence intervals for the change-point," Computational Statistics, Springer, vol. 25(2), pages 269-289, June.
    15. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    16. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.
    17. Chochola, Ondřej & Hušková, Marie & Prášková, Zuzana & Steinebach, Josef G., 2013. "Robust monitoring of CAPM portfolio betas," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 374-395.
    18. Marie Hušková & Claudia Kirch, 2008. "Bootstrapping confidence intervals for the change‐point of time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 947-972, November.
    19. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.
    20. Marc Lavielle & Gilles Teyssière, 2007. "Adaptive Detection of Multiple Change-Points in Asset Price Volatility," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 129-156, Springer.
    21. Marie Hušková & Simos Meintanis, 2006. "Change Point Analysis based on Empirical Characteristic Functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(2), pages 145-168, April.
    22. Zdeněk Hlávka & Marie Hušková & Claudia Kirch & Simos Meintanis, 2012. "Monitoring changes in the error distribution of autoregressive models based on Fourier methods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 605-634, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    3. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    4. Claudia Kirch, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 270-275, June.
    5. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    6. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    7. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    8. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    9. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    10. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    11. Cho, Haeran & Kirch, Claudia, 2022. "Bootstrap confidence intervals for multiple change points based on moving sum procedures," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    12. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    13. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    14. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    15. Chih‐Hao Chang & Kam‐Fai Wong & Wei‐Yee Lim, 2023. "Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(1), pages 4-47, February.
    16. Gabriela Ciuperca & Zahraa Salloum, 2015. "Empirical likelihood test in a posteriori change-point nonlinear model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 919-952, November.
    17. Tariku Tesfaye Haile & Fenglin Tian & Ghada AlNemer & Boping Tian, 2024. "Multiscale Change Point Detection for Univariate Time Series Data with Missing Value," Mathematics, MDPI, vol. 12(20), pages 1-22, October.
    18. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    19. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    20. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:265-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.