IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v131y2021icp498-522.html
   My bibliography  Save this article

Local times and sample path properties of the Rosenblatt process

Author

Listed:
  • Kerchev, George
  • Nourdin, Ivan
  • Saksman, Eero
  • Viitasaari, Lauri

Abstract

Let Z=(Zt)t≥0 be the Rosenblatt process with Hurst index H∈(1∕2,1). We prove joint continuity for the local time of Z, and establish Hölder conditions for the local time. These results are then used to study the irregularity of the sample paths of Z. Based on analogy with similar known results in the case of fractional Brownian motion, we believe our results are sharp. A main ingredient of our proof is a rather delicate spectral analysis of arbitrary linear combinations of integral operators, which arise from the representation of the Rosenblatt process as an element in the second chaos.

Suggested Citation

  • Kerchev, George & Nourdin, Ivan & Saksman, Eero & Viitasaari, Lauri, 2021. "Local times and sample path properties of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 498-522.
  • Handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:498-522
    DOI: 10.1016/j.spa.2020.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayache, Antoine, 2020. "Lower bound for local oscillations of Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4593-4607.
    2. Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.
    2. Ayache, Antoine & Bouly, Florent, 2022. "Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 143-163.
    3. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    4. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2022. "Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 885-911, October.
    5. Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
    6. Daw, Lara & Kerchev, George, 2023. "Fractal dimensions of the Rosenblatt process," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 544-571.
    7. Héctor Araya & Soledad Torres & Ciprian A. Tudor, 2024. "Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise," Statistical Papers, Springer, vol. 65(7), pages 4745-4766, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:131:y:2021:i:c:p:498-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.