IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v29y1996i4p307-315.html
   My bibliography  Save this article

On moments and tail behavior of v-stable random variables

Author

Listed:
  • Kozubowski, Tomasz J.
  • Panorska, Anna K.

Abstract

In this paper a class of limiting probability distributions of normalized sums of a random number of i.i.d. random variables is considered. The representation of such distributions via stable laws and asymptotic behavior of their moments and tail probabilities are established.

Suggested Citation

  • Kozubowski, Tomasz J. & Panorska, Anna K., 1996. "On moments and tail behavior of v-stable random variables," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 307-315, September.
  • Handle: RePEc:eee:stapro:v:29:y:1996:i:4:p:307-315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00187-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kozubowski, Tomasz J. & Rachev, Svetlozar T., 1994. "The theory of geometric stable distributions and its use in modeling financial data," European Journal of Operational Research, Elsevier, vol. 74(2), pages 310-324, April.
    2. Rachev S. T., 1993. "Rate Of Convergence For Maxima Of Random Arrays With Applications To Stock Returns," Statistics & Risk Modeling, De Gruyter, vol. 11(3), pages 279-288, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    2. Kozubowski, Tomasz J. & Meerschaert, Mark M., 2009. "A bivariate infinitely divisible distribution with exponential and Mittag-Leffler marginals," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1596-1601, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Oliveira & Wagner Barreto-Souza & Roger W. C. Silva, 2021. "Convergence and inference for mixed Poisson random sums," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 751-777, July.
    2. Fleten, Stein-Erik & Lindset, Snorre, 2008. "Optimal hedging strategies for multi-period guarantees in the presence of transaction costs: A stochastic programming approach," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1680-1689, March.
    3. Halvarsson, Daniel, 2013. "On the Estimation of Skewed Geometric Stable Distributions," Ratio Working Papers 216, The Ratio Institute.
    4. Nuerxiati Abudurexiti & Kai He & Dongdong Hu & Svetlozar T. Rachev & Hasanjan Sayit & Ruoyu Sun, 2021. "Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean-variance mixture models," Papers 2111.04311, arXiv.org, revised Feb 2023.
    5. Gawronski Wolfgang, 2001. "On The Unimodality Of Geometric Stable Laws," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 405-418, April.
    6. Tomasz Kozubowski, 2000. "Exponential Mixture Representation of Geometric Stable Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 231-238, June.
    7. Kozubowski, Tomasz J. & Panorska, Anna K., 1998. "Weak Limits for Multivariate Random Sums," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 398-413, November.
    8. Kozubowski, Tomasz J. & Meerschaert, Mark M. & Panorska, Anna K. & Scheffler, Hans-Peter, 2005. "Operator geometric stable laws," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 298-323, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:29:y:1996:i:4:p:307-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.