IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i4p1354-1374.html
   My bibliography  Save this article

Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions

Author

Listed:
  • Asogwa, Sunday A.
  • Nane, Erkan

Abstract

We consider time fractional stochastic heat type equation ∂tβut(x)=−ν(−Δ)α/2ut(x)+It1−β[σ(u)W⋅(t,x)] in (d+1) dimensions, where ν>0, β∈(0,1), α∈(0,2], d

Suggested Citation

  • Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:4:p:1354-1374
    DOI: 10.1016/j.spa.2016.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916301302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mijena, Jebessa B. & Nane, Erkan, 2015. "Space–time fractional stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3301-3326.
    2. Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
    3. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le & Hu, Yaozhong & Nualart, David, 2019. "Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5073-5112.
    2. Zou, Guang-an & Lv, Guangying & Wu, Jiang-Lun, 2018. "On the regularity of weak solutions to space–time fractional stochastic heat equations," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 84-89.
    3. McSylvester Ejighikeme Omaba & Hamdan Al Sulaimani, 2022. "On Caputo–Katugampola Fractional Stochastic Differential Equation," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    4. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
    6. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    7. Mijena, Jebessa B. & Nane, Erkan, 2015. "Space–time fractional stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3301-3326.
    8. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Kumar, Vivek, 2022. "Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 184(C).
    10. Liu, Xinfei & Yang, Xiaoyuan, 2023. "Numerical approximation of the stochastic equation driven by the fractional noise," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    11. Tuan, Nguyen Huy & Caraballo, Tomás & Thach, Tran Ngoc, 2023. "New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 24-67.
    12. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano & M. El-Morshedy, 2022. "The Optical Solutions of the Stochastic Fractional Kundu–Mukherjee–Naskar Model by Two Different Methods," Mathematics, MDPI, vol. 10(9), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:4:p:1354-1374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.