IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i6p2060-2082.html
   My bibliography  Save this article

Limit theory for the empirical extremogram of random fields

Author

Listed:
  • Buhl, Sven
  • Klüppelberg, Claudia

Abstract

Regularly varying stochastic processes are able to model extremal dependence between process values at locations in random fields. We investigate the empirical extremogram as an estimator of dependence in the extremes. We provide conditions to ensure asymptotic normality of the empirical extremogram centred by a pre-asymptotic version. The proof relies on a CLT for exceedance variables. For max-stable processes with Fréchet margins we provide conditions such that the empirical extremogram centred by its true version is asymptotically normal. The results of this paper apply to a variety of spatial and space–time processes, and to time series models. We apply our results to max-moving average processes and Brown–Resnick processes.

Suggested Citation

  • Buhl, Sven & Klüppelberg, Claudia, 2018. "Limit theory for the empirical extremogram of random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2060-2082.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:6:p:2060-2082
    DOI: 10.1016/j.spa.2017.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491730217X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
    2. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    3. Yong Bum Cho & Richard A. Davis & Souvik Ghosh, 2016. "Asymptotic Properties of the Empirical Spatial Extremogram," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 757-773, September.
    4. Dombry, Clément & Eyi-Minko, Frédéric, 2012. "Strong mixing properties of max-infinitely divisible random fields," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3790-3811.
    5. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    2. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    3. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    4. Hugo C. Winter & Jonathan A. Tawn, 2016. "Modelling heatwaves in central France: a case-study in extremal dependence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 345-365, April.
    5. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    6. Lin Han & Ivor Cribben & Stefan Trueck, 2022. "Extremal Dependence in Australian Electricity Markets," Papers 2202.09970, arXiv.org.
    7. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
    8. Yong Bum Cho & Richard A. Davis & Souvik Ghosh, 2016. "Asymptotic Properties of the Empirical Spatial Extremogram," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 757-773, September.
    9. Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
    10. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    11. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    12. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    13. Todorova, Neda, 2017. "The intraday directional predictability of large Australian stocks: A cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 64(C), pages 221-230.
    14. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    15. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    16. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    17. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    18. Erwan Koch, 2019. "Spatial Risk Measures and Rate of Spatial Diversification," Risks, MDPI, vol. 7(2), pages 1-26, May.
    19. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    20. Segers, Johan & Zhao, Yuwei & Meinguet, Thomas, 2016. "Radial-angular decomposition of regularly varying time series in star-shaped metric spaces," LIDAM Discussion Papers ISBA 2016017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:6:p:2060-2082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.