IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i3p757-773.html
   My bibliography  Save this article

Asymptotic Properties of the Empirical Spatial Extremogram

Author

Listed:
  • Yong Bum Cho
  • Richard A. Davis
  • Souvik Ghosh

Abstract

No abstract is available for this item.

Suggested Citation

  • Yong Bum Cho & Richard A. Davis & Souvik Ghosh, 2016. "Asymptotic Properties of the Empirical Spatial Extremogram," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 757-773, September.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:3:p:757-773
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12202
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    2. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    3. Dombry, Clément & Eyi-Minko, Frédéric, 2012. "Strong mixing properties of max-infinitely divisible random fields," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3790-3811.
    4. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Lifan & Samorodnitsky, Gennady, 2020. "Regularly varying random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4470-4492.
    2. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    3. Buhl, Sven & Klüppelberg, Claudia, 2018. "Limit theory for the empirical extremogram of random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2060-2082.
    4. Lin Han & Ivor Cribben & Stefan Trueck, 2022. "Extremal Dependence in Australian Electricity Markets," Papers 2202.09970, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    2. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    3. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    4. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    5. Buhl, Sven & Klüppelberg, Claudia, 2018. "Limit theory for the empirical extremogram of random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2060-2082.
    6. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    7. Luis Alvarez & Bruno Ferman, 2020. "Inference in Difference-in-Differences with Few Treated Units and Spatial Correlation," Papers 2006.16997, arXiv.org, revised Apr 2023.
    8. Elsinger, Helmut, 2013. "Comment on: A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 838-840.
    9. Davis, Richard & Drees, Holger & Segers, Johan & Warchol, Michal, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Discussion Papers ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    11. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    12. Hidalgo, Javier & Seo, Myung Hwan, 2015. "Specification Tests For Lattice Processes," Econometric Theory, Cambridge University Press, vol. 31(2), pages 294-336, April.
    13. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    14. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.
    15. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    16. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    17. Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
    18. Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).
    19. Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Other publications TiSEM d63bf400-7ff2-4a1c-8067-1, Tilburg University, School of Economics and Management.
    20. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:3:p:757-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.