IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2016017.html
   My bibliography  Save this paper

Radial-angular decomposition of regularly varying time series in star-shaped metric spaces

Author

Listed:
  • Segers, Johan
  • Zhao, Yuwei
  • Meinguet, Thomas

Abstract

No abstract is available for this item.

Suggested Citation

  • Segers, Johan & Zhao, Yuwei & Meinguet, Thomas, 2016. "Radial-angular decomposition of regularly varying time series in star-shaped metric spaces," LIDAM Discussion Papers ISBA 2016017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2016017
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A173618/datastream/PDF_02/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drees, Holger & Segers, Johan & Warchol, Michal, 2015. "Statistics for Tail Processes of Markov Chains," LIDAM Reprints ISBA 2015023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
    3. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    4. Meinguet, Thomas & Segers, Johan, 2010. "Regularly varying time series in Banach spaces," LIDAM Discussion Papers ISBA 2010002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Janssens, Anja & Segers, Johan, 2015. "Markov tail chains," LIDAM Reprints ISBA 2015010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
    2. Davis, Richard & Drees, Holger & Segers, Johan & Warchol, Michal, 2018. "Inference on the tail process with application to financial time series modelling," LIDAM Discussion Papers ISBA 2018002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    4. Davis, Richard & Holger, Drees & Segers, Johan & Warchol, Michal, 2016. "Modeling serial extremal dependence," LIDAM Discussion Papers ISBA 2016016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Bücher, Axel & Jennessen, Tobias, 2022. "Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 75-106.
    6. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    7. Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    8. Lin Han & Ivor Cribben & Stefan Trueck, 2022. "Extremal Dependence in Australian Electricity Markets," Papers 2202.09970, arXiv.org.
    9. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    10. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    11. Heejoon Han, 2016. "Quantile Dependence between Stock Markets and its Application in Volatility Forecasting," Papers 1608.07193, arXiv.org.
    12. Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
    13. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
    14. de Valk, Cees Fouad & Segers, Johan, 2018. "Stability and tail limits of transport-based quantile contours," LIDAM Discussion Papers ISBA 2018031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    16. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    17. Todorova, Neda, 2017. "The intraday directional predictability of large Australian stocks: A cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 64(C), pages 221-230.
    18. Stefan Birr & Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2016. "On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities," Working Papers ECARES ECARES 2016-38, ULB -- Universite Libre de Bruxelles.
    19. janssen, Anja & Segers, Johan, 2013. "Markov Tail Chains," LIDAM Discussion Papers ISBA 2013017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2016017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.