IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v75y2012i8p1129-1151.html
   My bibliography  Save this article

Re-weighted functional estimation of second-order diffusion processes

Author

Listed:
  • Yunyan Wang
  • Lixin Zhang
  • Mingtian Tang

Abstract

Second-order diffusion process can not only model integrated and differentiated diffusion processes but also overcome the difficulties associated with the nondifferentiability of the Brownian motion, so these models play an important role in econometric analysis. In this paper, we propose a re-weighted estimator of the diffusion coefficient in the second-order diffusion model. Consistence of the estimator is proved under appropriate conditions and the conditions that ensure the asymptotic normality are also stated. The performance of the proposed estimator is assessed by simulation study. Copyright Springer-Verlag 2012

Suggested Citation

  • Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
  • Handle: RePEc:spr:metrik:v:75:y:2012:i:8:p:1129-1151
    DOI: 10.1007/s00184-011-0372-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-011-0372-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-011-0372-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke-Li Xu & Peter C. B. Phillips, 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 518-528, October.
    2. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    3. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    4. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    5. Nicolau, João, 2007. "Nonparametric Estimation Of Second-Order Stochastic Differential Equations," Econometric Theory, Cambridge University Press, vol. 23(5), pages 880-898, October.
    6. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Post-Print hal-00404901, HAL.
    7. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 83-104, March.
    8. Gobet, Emmanuel & Hoffmann, Marc & Reiß, Markus, 2002. "Nonparametric estimation of scalar diffusions based on low frequency data is ill-posed," SFB 373 Discussion Papers 2002,57, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
    10. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    11. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    12. Susanne Ditlevsen & Michael Sørensen, 2004. "Inference for Observations of Integrated Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 417-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Xianzhu & Ou, Meijuan & Chen, Ailian, 2021. "Reweighted Nadaraya–Watson estimation of conditional density function in the right-censored model," Statistics & Probability Letters, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ke-Li & Phillips, Peter C. B., 2011. "Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 518-528.
    2. Peter C.B. Phillips & Ke-Li Xu, 2007. "Tilted Nonparametric Estimation of Volatility Functions," Cowles Foundation Discussion Papers 1612, Cowles Foundation for Research in Economics, Yale University, revised Jul 2010.
    3. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    4. Nicolau, João, 2008. "Modeling financial time series through second-order stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2700-2704, November.
    5. Muhammad Hanif, 2011. "Reweighted Nadaraya-Watson estimator of scalar diffusion models by using asymmetric kernels," Far East Journal of Psychology and Business, Far East Research Centre, vol. 4(5), pages 53-69, July.
    6. Song Yuping & Hou Weijie & Zhou Shengyi, 2019. "Variance reduction estimation for return models with jumps using gamma asymmetric kernels," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(5), pages 1-38, December.
    7. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    8. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    9. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    10. Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
    11. Jean Jacod & Mark Podolskij, 2012. "A test for the rank of the volatility process: the random perturbation approach," CREATES Research Papers 2012-57, Department of Economics and Business Economics, Aarhus University.
    12. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    13. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    14. repec:wyi:journl:002095 is not listed on IDEAS
    15. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    16. Han-Ying Liang, 2012. "Weighted nonparametric regression estimation with truncated and dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1051-1073, December.
    17. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    18. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    19. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    20. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    21. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:75:y:2012:i:8:p:1129-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.