IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i4d10.1007_s10959-021-01152-y.html
   My bibliography  Save this article

Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space

Author

Listed:
  • Xiuwei Yin

    (Anhui Normal University)

  • Jiang-Lun Wu

    (Swansea University)

  • Guangjun Shen

    (Anhui Normal University)

Abstract

The well-posedness of stochastic Navier–Stokes equations with various noises is a hot topic in the area of stochastic partial differential equations. Recently, the consideration of stochastic Navier–Stokes equations involving fractional Laplacian has received more and more attention. Due to the scaling-invariant property of the fractional stochastic equations concerned, it is natural and also very important to study the well-posedness of stochastic fractional Navier–Stokes equations in the associated critical Fourier–Besov spaces. In this paper, we are concerned with the three-dimensional stochastic fractional Navier–Stokes equation driven by multiplicative noise. We aim to establish the well-posedness of solutions of the concerned equation. To this end, by utilising the Fourier localisation technique, we first establish the local existence and uniqueness of the solutions in the critical Fourier–Besov space $$\dot{\mathcal {B}}^{4-2\alpha -\frac{3}{p}}_{p,r}$$ B ˙ p , r 4 - 2 α - 3 p . Then, under the condition that the initial date is sufficiently small, we show the global existence of the solutions in the probabilistic sense.

Suggested Citation

  • Xiuwei Yin & Jiang-Lun Wu & Guangjun Shen, 2022. "Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2940-2959, December.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-021-01152-y
    DOI: 10.1007/s10959-021-01152-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-021-01152-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-021-01152-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sritharan, S.S. & Sundar, P., 2006. "Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1636-1659, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maroulas, Vasileios & Xiong, Jie, 2013. "Large deviations for optimal filtering with fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2340-2352.
    2. Duan, Jinqiao & Millet, Annie, 2009. "Large deviations for the Boussinesq equations under random influences," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2052-2081, June.
    3. Swie[combining cedilla]ch, Andrzej, 2009. "A PDE approach to large deviations in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1081-1123, April.
    4. Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
    5. Ganguly, Arnab, 2018. "Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2179-2227.
    6. Mohan, Manil T., 2020. "Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4513-4562.
    7. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    8. Sundar, P. & Yin, Hong, 2009. "Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1216-1234, April.
    9. Liu, Wei & Röckner, Michael & Zhu, Xiang-Chan, 2013. "Large deviation principles for the stochastic quasi-geostrophic equations," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3299-3327.
    10. Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
    11. Wei Wang & Jianliang Zhai & Tusheng Zhang, 2022. "Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2916-2939, December.
    12. Salins, M., 2021. "Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 159-194.
    13. Cipriano, Fernanda & Torrecilla, Iván, 2015. "Inviscid limit for 2D stochastic Navier–Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2405-2426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-021-01152-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.