Speed of Convergence of Time Euler Schemes for a Stochastic 2D Boussinesq Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Duan, Jinqiao & Millet, Annie, 2009. "Large deviations for the Boussinesq equations under random influences," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2052-2081, June.
- Hannelore Breckner, 2000. "Galerkin approximation and the strong solution of the Navier-Stokes equation," International Journal of Stochastic Analysis, Hindawi, vol. 13, pages 1-21, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
- Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
- Deugoué, G. & Tachim Medjo, T., 2023. "Large deviation for a 3D globally modified Cahn–Hilliard–Navier–Stokes model under random influences," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 33-71.
- Ganguly, Arnab, 2018. "Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2179-2227.
- Du, Lihuai & Zhang, Ting, 2020. "Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1545-1567.
- Pappalettera, Umberto, 2022. "Large deviations for stochastic equations in Hilbert spaces with non-Lipschitz drift," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 1-20.
- Liu, Wei & Röckner, Michael & Zhu, Xiang-Chan, 2013. "Large deviation principles for the stochastic quasi-geostrophic equations," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3299-3327.
- Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
- Salins, M., 2021. "Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 159-194.
More about this item
Keywords
Boussinesq model; implicit time Euler schemes; convergence in probability; strong convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4246-:d:971322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.