IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v104y2015icp36-48.html
   My bibliography  Save this article

Large deviations for a class of counting processes and some statistical applications

Author

Listed:
  • Macci, Claudio
  • Pacchiarotti, Barbara

Abstract

The aim of this paper is to prove results on large deviations for a class of counting processes, and to illustrate some statistical applications. We also present a generalization of the results for a class of compound processes. The statistical applications describe the asymptotic behavior of some issues concerning two hypothesis testing problems, and the logarithmic rates are expressed in terms of the large deviation rate functions.

Suggested Citation

  • Macci, Claudio & Pacchiarotti, Barbara, 2015. "Large deviations for a class of counting processes and some statistical applications," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 36-48.
  • Handle: RePEc:eee:stapro:v:104:y:2015:i:c:p:36-48
    DOI: 10.1016/j.spl.2015.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Kozubowski, Tomasz J., 2008. "A class of weighted Poisson processes," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2346-2352, October.
    2. de Acosta, A., 1994. "Large deviations for vector-valued Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 75-115, June.
    3. Leda Minkova & N. Balakrishnan, 2013. "Compound weighted Poisson distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 543-558, May.
    4. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    5. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    2. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    3. Yongzhao Shao & Raúl Jiménez, 1998. "Entropy for Random Partitions and Its Applications," Journal of Theoretical Probability, Springer, vol. 11(2), pages 417-433, April.
    4. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    5. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    6. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    7. Leda Minkova & N. Balakrishnan, 2013. "Compound weighted Poisson distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 543-558, May.
    8. Dembo, Amir & Zajic, Tim, 1995. "Large deviations: From empirical mean and measure to partial sums process," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 191-224, June.
    9. Kim, Bara & Kim, Jeongsim & Kim, Jerim, 2021. "De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 186-201.
    10. Jorge Garcia, 2008. "A Large Deviation Principle for Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 21(2), pages 476-501, June.
    11. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    12. Chedly Gelin Louzayadio & Rodnellin Onesime Malouata & Michel Diafouka Koukouatikissa, 2021. "A Weighted Poisson Distribution for Underdispersed Count Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 157-157, July.
    13. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    14. Freud, Thomas & Rodriguez, Pablo M., 2023. "The Bell–Touchard counting process," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    15. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    16. Daras, Tryfon, 1998. "Trajectories of exchangeable sequences: Large and moderate deviations results," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 289-304, August.
    17. Michel Mandjes, 2022. "Multivariate M/G/1 systems with coupled input and parallel service," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 309-311, April.
    18. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2018. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Working Papers hal-01887402, HAL.
    19. Pierre-Olivier Goffard & Claude Lefèvre, 2018. "Duality in ruin problems for ordered risk models," Post-Print hal-01398910, HAL.
    20. Florens, Danielle & Pham, Huyên, 1998. "Large deviation probabilities in estimation of Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 117-139, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:104:y:2015:i:c:p:36-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.