IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i4p1210-1225.html
   My bibliography  Save this article

An optimal stopping problem for fragmentation processes

Author

Listed:
  • Kyprianou, Andreas E.
  • Pardo, Juan Carlos

Abstract

In this article we consider a toy example of an optimal stopping problem driven by fragmentation processes. We show that one can work with the concept of stopping lines to formulate the notion of an optimal stopping problem and moreover, to reduce it to a classical optimal stopping problem for a generalized Ornstein–Uhlenbeck process associated with Bertoin’s tagged fragment. We go on to solve the latter using a classical verification technique thanks to the application of aspects of the modern theory of integrated exponential Lévy processes.

Suggested Citation

  • Kyprianou, Andreas E. & Pardo, Juan Carlos, 2012. "An optimal stopping problem for fragmentation processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1210-1225.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1210-1225
    DOI: 10.1016/j.spa.2011.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911003176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maulik, Krishanu & Zwart, Bert, 2006. "Tail asymptotics for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 156-177, February.
    2. Gapeev, Pavel V., 2008. "The integral option in a model with jumps," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2623-2631, November.
    3. Jagers, Peter, 1989. "General branching processes as Markov fields," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 183-212, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuznetsov, A., 2012. "On the distribution of exponential functionals for Lévy processes with jumps of rational transform," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 654-663.
    2. Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
    3. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    4. Shankar Bhamidi & Steven N. Evans & Arnab Sen, 2012. "Spectra of Large Random Trees," Journal of Theoretical Probability, Springer, vol. 25(3), pages 613-654, September.
    5. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    6. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    7. Dyszewski, Piotr, 2016. "Iterated random functions and slowly varying tails," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 392-413.
    8. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    9. Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
    10. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    11. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    12. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    13. Gapeev, Pavel V., 2020. "Optimal stopping problems for running minima with positive discounting rates," LSE Research Online Documents on Economics 105849, London School of Economics and Political Science, LSE Library.
    14. Kyprianou, A. E., 1999. "A note on branching Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 1-14, July.
    15. Krishanu Maulik & Bert Zwart, 2009. "An extension of the square root law of TCP," Annals of Operations Research, Springer, vol. 170(1), pages 217-232, September.
    16. Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.
    17. Chafaï, Djalil & Malrieu, Florent & Paroux, Katy, 2010. "On the long time behavior of the TCP window size process," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1518-1534, August.
    18. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    19. Iksanov, Alexander & Meiners, Matthias, 2015. "Rate of convergence in the law of large numbers for supercritical general multi-type branching processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 708-738.
    20. Barker, A. & Savov, M., 2021. "Bivariate Bernstein–gamma functions and moments of exponential functionals of subordinators," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 454-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1210-1225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.