IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v25y2012i3d10.1007_s10959-011-0360-9.html
   My bibliography  Save this article

Spectra of Large Random Trees

Author

Listed:
  • Shankar Bhamidi

    (The University of British Columbia)

  • Steven N. Evans

    (University of California at Berkeley)

  • Arnab Sen

    (University of California at Berkeley)

Abstract

We analyze the eigenvalues of the adjacency matrices of a wide variety of random trees. Using general, broadly applicable arguments based on the interlacing inequalities for the eigenvalues of a principal submatrix of a Hermitian matrix and a suitable notion of local weak convergence for an ensemble of random trees that we call probability fringe convergence, we show that the empirical spectral distributions for many random tree models converge to a deterministic (model-dependent) limit as the number of vertices goes to infinity. Moreover, the masses assigned by the empirical spectral distributions to individual points also converge in distribution to constants. We conclude for ensembles such as the linear preferential attachment models, random recursive trees, and the uniform random trees that the limiting spectral distribution has a set of atoms that is dense in the real line. We obtain lower bounds on the mass assigned to zero by the empirical spectral measures via the connection between the number of zero eigenvalues of the adjacency matrix of a tree and the cardinality of a maximal matching on the tree. In particular, we employ a simplified version of an algorithm due to Karp and Sipser to construct maximal matchings and understand their properties. Moreover, we show that the total weight of a weighted matching is asymptotically equivalent to a constant multiple of the number of vertices when the edge weights are independent, identically distributed, nonnegative random variables with finite expected value, thereby significantly extending a result obtained by Aldous and Steele in the special case of uniform random trees. We greatly generalize a celebrated result obtained by Schwenk for the uniform random trees by showing that if any ensemble converges in the probability fringe sense and a very mild further condition holds, then, with probability converging to one, the spectrum of a realization is shared by at least one other (nonisomorphic) tree. For the linear preferential attachment model with parameter a>−1, we show that for any fixed k, the k largest eigenvalues jointly converge in distribution to a nontrivial limit when rescaled by $n^{1/2\gamma_{a}}$ , where γ a =a+2 is the Malthusian rate of growth parameter for an associated continuous-time branching process.

Suggested Citation

  • Shankar Bhamidi & Steven N. Evans & Arnab Sen, 2012. "Spectra of Large Random Trees," Journal of Theoretical Probability, Springer, vol. 25(3), pages 613-654, September.
  • Handle: RePEc:spr:jotpro:v:25:y:2012:i:3:d:10.1007_s10959-011-0360-9
    DOI: 10.1007/s10959-011-0360-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-011-0360-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-011-0360-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haemers, W.H., 1995. "Interlacing eigenvalues and graphs," Other publications TiSEM 35c08207-2c5c-4387-aaf5-2, Tilburg University, School of Economics and Management.
    2. Jagers, Peter, 1989. "General branching processes as Markov fields," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 183-212, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arijit Chakrabarty & Rajat Subhra Hazra & Frank den Hollander & Matteo Sfragara, 2022. "Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2413-2441, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Guisheng & Yu, Guidong & Sun, Wei & Ruan, Zheng, 2018. "The least eigenvalue of graphs whose complements have only two pendent vertices," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 112-119.
    2. van Dam, E.R. & Haemers, W.H., 1995. "A characterization of distance-regular graphs with diameter three," Research Memorandum FEW 695, Tilburg University, School of Economics and Management.
    3. Haemers, W.H., 1996. "Disconnected Vertex Sets and Equidistant Code Pairs," Other publications TiSEM 88f23503-c117-4689-876b-1, Tilburg University, School of Economics and Management.
    4. Haemers, W.H. & Spence, E., 2000. "The Pseudo-Geometric Graphs for Generalised Quadrangles of Order (3,t)," Other publications TiSEM 5ff99d9d-636d-43b2-80ef-c, Tilburg University, School of Economics and Management.
    5. Etienne de Klerk & Monique Laurent, 2020. "Worst-Case Examples for Lasserre’s Measure–Based Hierarchy for Polynomial Optimization on the Hypercube," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 86-98, February.
    6. Haemers, W.H. & Spence, E., 2001. "The pseudo-geometric graphs for generalized quadrangles of order (3,t)," Other publications TiSEM 792e7c74-c02a-4bd4-a2d2-5, Tilburg University, School of Economics and Management.
    7. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    8. Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
    9. Bussemaker, F.C. & Haemers, W.H. & Spence, E., 1999. "The Search for Pseudo Orthogonal Latin Squares of Order Six," Other publications TiSEM eaa43e8f-0be1-4b54-a567-f, Tilburg University, School of Economics and Management.
    10. Haemers, W.H., 1997. "Disconnected vertex sets and equidistant code pairs," Other publications TiSEM 7e670383-93b5-4e6a-b9da-3, Tilburg University, School of Economics and Management.
    11. Brouwer, A.E. & Haemers, W.H., 2004. "Eigenvalues and Perfect Matchings," Other publications TiSEM 9283486e-34f6-4a28-9315-a, Tilburg University, School of Economics and Management.
    12. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    13. van Dam, E.R. & Haemers, W.H., 1998. "Graphs with constant mu and mu-bar," Other publications TiSEM 3cba5bf4-ad2f-465d-a9a2-a, Tilburg University, School of Economics and Management.
    14. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    15. Haemers, W.H., 1996. "Disconnected Vertex Sets and Equidistant Code Pairs," Research Memorandum 728, Tilburg University, School of Economics and Management.
    16. Fiala, N.C. & Haemers, W.H., 2003. "5-Chromatic Strongly Regular Graphs," Other publications TiSEM 16d4bde1-141a-428d-9633-b, Tilburg University, School of Economics and Management.
    17. van Dam, E.R., 1997. "Three-Class Association Schemes," Research Memorandum 744, Tilburg University, School of Economics and Management.
    18. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    19. Haemers, W.H. & Touchev, V.D., 1996. "Spreads in strongly regular graphs," Other publications TiSEM baf73ad8-e852-4528-b0b5-c, Tilburg University, School of Economics and Management.
    20. Bussemaker, F.C. & Haemers, W.H. & Spence, E., 1999. "The Search for Pseudo Orthogonal Latin Squares of Order Six," Research Memorandum 780, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:25:y:2012:i:3:d:10.1007_s10959-011-0360-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.