IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v32y1989i2p183-212.html
   My bibliography  Save this article

General branching processes as Markov fields

Author

Listed:
  • Jagers, Peter

Abstract

The natural Markov structure for population growth is that of genetics: newborns inherit types from their mothers, and given those they are independent of the history of their earlier ancestry. This leads to Markov fields on the space of sets of individuals, partially ordered by descent. The structure of such fields is investigated. It is proved that this Markov property implies branching, i.e. the conditional independence of disjoint daughter populations. The process also has the strong Markov property at certain optional sets of individuals. An intrinsic martingale (indexed by sets of individuals) is exhibited, that catches the stochastic element of population development. The deterministic part is analyzed by Markov renewal methods. Finally the strong Markov property found is used to divide the population into conditionally independent subpopulations. On those classical limit theory for sums of independent random variables can be used to catch the asymptotic population development, as real time passes.

Suggested Citation

  • Jagers, Peter, 1989. "General branching processes as Markov fields," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 183-212, August.
  • Handle: RePEc:eee:spapps:v:32:y:1989:i:2:p:183-212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(89)90075-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    2. Kyprianou, Andreas E. & Pardo, Juan Carlos, 2012. "An optimal stopping problem for fragmentation processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1210-1225.
    3. Kyprianou, A. E., 1999. "A note on branching Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 1-14, July.
    4. Iksanov, Alexander & Meiners, Matthias, 2015. "Rate of convergence in the law of large numbers for supercritical general multi-type branching processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 708-738.
    5. Kolesko, Konrad & Sava-Huss, Ecaterina, 2023. "Limit theorems for discrete multitype branching processes counted with a characteristic," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 49-75.
    6. Shankar Bhamidi & Steven N. Evans & Arnab Sen, 2012. "Spectra of Large Random Trees," Journal of Theoretical Probability, Springer, vol. 25(3), pages 613-654, September.
    7. Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
    8. Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.
    9. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:32:y:1989:i:2:p:183-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.