IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v170y2009i1p217-23210.1007-s10479-008-0437-8.html
   My bibliography  Save this article

An extension of the square root law of TCP

Author

Listed:
  • Krishanu Maulik
  • Bert Zwart

Abstract

Using probabilistic scaling methods, we extend the square root law of TCP to schemes which may not be of the AIMD type. Our results offer insight in the relationship between throughput and loss rate, and the time scale on which losses take place. Similar results are shown to hold in scenarios where dependencies between losses occur. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Krishanu Maulik & Bert Zwart, 2009. "An extension of the square root law of TCP," Annals of Operations Research, Springer, vol. 170(1), pages 217-232, September.
  • Handle: RePEc:spr:annopr:v:170:y:2009:i:1:p:217-232:10.1007/s10479-008-0437-8
    DOI: 10.1007/s10479-008-0437-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0437-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0437-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maulik, Krishanu & Zwart, Bert, 2006. "Tail asymptotics for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 156-177, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chafaï, Djalil & Malrieu, Florent & Paroux, Katy, 2010. "On the long time behavior of the TCP window size process," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1518-1534, August.
    2. Palmowski, Zbigniew & Vlasiou, Maria, 2011. "A Lévy input model with additional state-dependent services," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1546-1564, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuznetsov, A., 2012. "On the distribution of exponential functionals for Lévy processes with jumps of rational transform," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 654-663.
    2. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    3. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    4. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    5. Kyprianou, Andreas E. & Pardo, Juan Carlos, 2012. "An optimal stopping problem for fragmentation processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1210-1225.
    6. Serguei Foss & Takis Konstantopoulos & Stan Zachary, 2007. "Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments," Journal of Theoretical Probability, Springer, vol. 20(3), pages 581-612, September.
    7. Runhuan Feng & Alexey Kuznetsov & Fenghao Yang, 2016. "Exponential functionals of Levy processes and variable annuity guaranteed benefits," Papers 1610.00577, arXiv.org.
    8. Palmowski, Zbigniew & Vlasiou, Maria, 2011. "A Lévy input model with additional state-dependent services," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1546-1564, July.
    9. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    10. Dyszewski, Piotr, 2016. "Iterated random functions and slowly varying tails," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 392-413.
    11. Kamphorst, Bart & Zwart, Bert, 2019. "Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 572-603.
    12. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    13. Chafaï, Djalil & Malrieu, Florent & Paroux, Katy, 2010. "On the long time behavior of the TCP window size process," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1518-1534, August.
    14. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    15. Barker, A. & Savov, M., 2021. "Bivariate Bernstein–gamma functions and moments of exponential functionals of subordinators," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 454-497.
    16. Lars Andersen, 2011. "Subexponential loss rate asymptotics for Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 91-108, February.
    17. Feng, Runhuan & Kuznetsov, Alexey & Yang, Fenghao, 2019. "Exponential functionals of Lévy processes and variable annuity guaranteed benefits," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 604-625.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:170:y:2009:i:1:p:217-232:10.1007/s10479-008-0437-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.