IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v82y1999i1p1-14.html
   My bibliography  Save this article

A note on branching Lévy processes

Author

Listed:
  • Kyprianou, A. E.

Abstract

We show for the branching Lévy process that it is possible to construct two classes of multiplicative martingales using stopping lines and solutions to one of two source equations. The first class, similar to those martingales of Chauvin (1991, Ann. Probab. 30, 1195-1205) and Neveu (1988, Seminar on Stochastic Processes 1987, Progress in Probability and Statistics, vol. 15, Birkhaüser, Boston, pp. 223-241) have a source equation which provides travelling wave solutions to a generalized version of the K-P-P equation. For the second class of martingales, similar to those of Biggins and Kyprianou (1997, Ann. Probab. 25, 337-360), the source equation is a functional equation. We show further that under reasonably broad circumstances, these equations share the same solutions and hence the two types of martingales are one and the same. This conclusion also tells us something more about the nature of the solutions to the first of our two equations.

Suggested Citation

  • Kyprianou, A. E., 1999. "A note on branching Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 1-14, July.
  • Handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:1-14
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00010-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jagers, Peter, 1989. "General branching processes as Markov fields," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 183-212, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Knobloch, 2018. "One-Sided FKPP Travelling Waves for Homogeneous Fragmentation Processes," Journal of Theoretical Probability, Springer, vol. 31(2), pages 895-931, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyprianou, Andreas E. & Pardo, Juan Carlos, 2012. "An optimal stopping problem for fragmentation processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1210-1225.
    2. Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
    3. Shankar Bhamidi & Steven N. Evans & Arnab Sen, 2012. "Spectra of Large Random Trees," Journal of Theoretical Probability, Springer, vol. 25(3), pages 613-654, September.
    4. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    5. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    6. Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.
    7. Iksanov, Alexander & Meiners, Matthias, 2015. "Rate of convergence in the law of large numbers for supercritical general multi-type branching processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 708-738.
    8. Kolesko, Konrad & Sava-Huss, Ecaterina, 2023. "Limit theorems for discrete multitype branching processes counted with a characteristic," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 49-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.