IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v162y2023icp387-422.html
   My bibliography  Save this article

Scaling limits for a class of regular Ξ-coalescents

Author

Listed:
  • Möhle, Martin
  • Vetter, Benedict

Abstract

Let Nt(n) denote the number of blocks in a Ξ-coalescent restricted to a sample of size n∈N after time t≥0. Under the assumption of a certain curvature condition on a function well-known from the literature, we prove the existence of sequences (v(n,t))n∈N for which (logNt(n)−logv(n,t))t≥0 converges to an Ornstein–Uhlenbeck type process as n→∞. The curvature condition is intrinsically related to the behavior of Ξ near the origin. The method of proof is to show the uniform convergence of the associated generators. Via Siegmund duality an analogous result for the fixation line is proven. Several examples are studied.

Suggested Citation

  • Möhle, Martin & Vetter, Benedict, 2023. "Scaling limits for a class of regular Ξ-coalescents," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 387-422.
  • Handle: RePEc:eee:spapps:v:162:y:2023:i:c:p:387-422
    DOI: 10.1016/j.spa.2023.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    2. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    2. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    3. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    4. Behme, Anita & Lindner, Alexander, 2012. "Multivariate generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1487-1518.
    5. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    6. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    7. Murillo-Salas, A. & Pérez, J.L. & Siri-Jégousse, A., 2017. "Refracted continuous-state branching processes: Self-regulating populations," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 34-44.
    8. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    9. Shukai Chen, 2023. "On the Exponential Ergodicity of (2+2)-Affine Processes in Total Variation Distances," Journal of Theoretical Probability, Springer, vol. 36(1), pages 315-330, March.
    10. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
    11. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    12. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    13. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    14. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Working Papers hal-01275397, HAL.
    15. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    16. Barndorff-Nielsen, Ole E. & Maejima, Makoto, 2008. "Semigroups of Upsilon transformations," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2334-2343, December.
    17. Arturo Kohatsu & Makoto Yamazato, 2003. "On moments and tail behaviors of storage processes," Economics Working Papers 673, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    19. Jianhai Bao & Jian Wang, 2023. "Coupling methods and exponential ergodicity for two‐factor affine processes," Mathematische Nachrichten, Wiley Blackwell, vol. 296(5), pages 1716-1736, May.
    20. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:162:y:2023:i:c:p:387-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.