IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v86y2023ics0038012122002993.html
   My bibliography  Save this article

Data-driven forecasting for operational planning of emergency medical services

Author

Listed:
  • Abreu, Paulo
  • Santos, Daniel
  • Barbosa-Povoa, Ana

Abstract

Emergency medical services (EMS) play a vital role in delivering pre-hospital care. The operational efficiency of such services is critical and adequate demand forecasts can contribute to such a goal. But for that, the available data need to be well characterized before being used. Previous studies have failed to address some important aspects of this need, such as exploring a comprehensive list of contextual data to decide which are relevant to explain the EMS demand behavior. Moreover, modern forecasting techniques have been explored in the EMS context, including neural networks, but the computational complexity inherent to the methods and their use was not discussed. Finally, it is also unclear how different demand patterns can be when predicting the volume of emergency calls considering the priority level and the number of dispatches according to vehicle type. This study proposes a generic data-driven forecasting method to address these shortcomings and to support operational decisions. The results obtained with the proposed method indicate that each priority call and vehicle type shows different patterns, which suggests that such differentiation should contribute to better resource allocation. At the same time, the operational impact of the demand shared by neighboring zones proved to be significant at bases near the border. The models developed resulted in important decision tools that can be used to predict the dynamic demand of EMS on an hourly or shift basis. Additionally, the method adds value for decision-makers that want to plan not only when and how many but also where resources are demanded, avoiding assumptions that impact the operational performance.

Suggested Citation

  • Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:soceps:v:86:y:2023:i:c:s0038012122002993
    DOI: 10.1016/j.seps.2022.101492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    2. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    3. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    4. van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.
    5. Enayati, Shakiba & Mayorga, Maria E. & Rajagopalan, Hari K. & Saydam, Cem, 2018. "Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers," Omega, Elsevier, vol. 79(C), pages 67-80.
    6. Kvalseth, T.O. & Deems, J.M., 1979. "Statistical models of the demand for emergency medical services in an urban area," American Journal of Public Health, American Public Health Association, vol. 69(3), pages 250-255.
    7. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    8. J L Vile & J W Gillard & P R Harper & V A Knight, 2012. "Predicting ambulance demand using singular spectrum analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1556-1565, November.
    9. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    10. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    11. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    12. Aldrich, C.A. & Hisserich, J.C. & Lave, L.B., 1971. "An analysis of the demand for emergency ambulance service in an urban area," American Journal of Public Health, American Public Health Association, vol. 61(6), pages 1156-1169.
    13. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    15. Melanie Reuter-Oppermann & Pieter L. van den Berg & Julie L. Vile, 2017. "Logistics for Emergency Medical Service systems," Health Systems, Taylor & Francis Journals, vol. 6(3), pages 187-208, November.
    16. Nida Shahid & Tim Rappon & Whitney Berta, 2019. "Applications of artificial neural networks in health care organizational decision-making: A scoping review," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    17. Acuna, Jorge A. & Zayas-Castro, José L. & Charkhgard, Hadi, 2020. "Ambulance allocation optimization model for the overcrowding problem in US emergency departments: A case study in Florida," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    19. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbari, Leilanaz & Kazemi, Ahmad & Salari, Majid, 2023. "Operational planning of vehicles for rescue and relief operations considering the unavailability of the relocated vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    2. Hyunjin Lee & Taesik Lee, 2021. "Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 1090-1115, December.
    3. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    5. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    6. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    7. Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
    10. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Benjamin M. Taylor, 2017. "Spatial modelling of emergency service response times," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 433-453, February.
    12. Jing Liu & Ruilin Ouyang & Chun-An Chou & Jacqueline Griffin, 2023. "An Analytical Approach for Dispatch Operations of Emergency Medical Services: A Case Study of COVID-19," SN Operations Research Forum, Springer, vol. 4(2), pages 1-36, June.
    13. McArthur, David Philip & Gregersen, Fredrik A. & Hagen, Terje P., 2014. "Modelling the cost of providing ambulance services," Journal of Transport Geography, Elsevier, vol. 34(C), pages 175-184.
    14. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    15. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    16. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    17. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Wanxin Hou & Shaowen Qin & Campbell Henry Thompson, 2022. "Effective Response to Hospital Congestion Scenarios: Simulation-Based Evaluation of Decongestion Interventions," IJERPH, MDPI, vol. 19(23), pages 1-11, December.
    19. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    20. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:86:y:2023:i:c:s0038012122002993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.