IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v153y2009i2p133-135.html
   My bibliography  Save this article

On the effect of mean-nonstationarity in dynamic panel data models

Author

Listed:
  • Hayakawa, Kazuhiko

Abstract

In this paper, we investigate the effect of mean-nonstationarity on the first-difference generalized method of moments (FD-GMM) estimator in dynamic panel data models. We find that when data is mean-nonstationary and the variance of individual effects is significantly larger than that of disturbances, the FD-GMM estimator performs quite well. We demonstrate that this is because the correlation between the lagged dependent variable and instruments gets larger owing to the unremoved individual effects, i.e., instruments become strong. This implies that, under mean-nonstationarity, the FD-GMM estimator does not always suffer from the weak instruments problem even when data is persistent.

Suggested Citation

  • Hayakawa, Kazuhiko, 2009. "On the effect of mean-nonstationarity in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 153(2), pages 133-135, December.
  • Handle: RePEc:eee:econom:v:153:y:2009:i:2:p:133-135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00128-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    4. Kazuhiko Hayakawa, 2007. "A Simple Efficient Instrumental Variable Estimator in Panel AR(p) Models," Hi-Stat Discussion Paper Series d07-213, Institute of Economic Research, Hitotsubashi University.
    5. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    6. Kazuhiko Hayakawa, 2008. "On the Effect of Nonstationary Initial Conditions in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d07-245, Institute of Economic Research, Hitotsubashi University.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    9. Hause, John C, 1980. "The Fine Structure of Earnings and the On-the-Job Training Hypothesis," Econometrica, Econometric Society, vol. 48(4), pages 1013-1029, May.
    10. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    11. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    12. Hayakawa, Kazuhiko, 2009. "A SIMPLE EFFICIENT INSTRUMENTAL VARIABLE ESTIMATOR FOR PANEL AR(p) MODELS WHEN BOTH N AND T ARE LARGE," Econometric Theory, Cambridge University Press, vol. 25(3), pages 873-890, June.
    13. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Mamingi, Nlandu & Martin, Kareem, 2018. "Foreign direct investment and growth in developing countries: evidence from the countries of the Organisation of Eastern Caribbean States," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    3. Hayakawa, Kazuhiko, 2016. "Improved GMM estimation of panel VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 240-264.
    4. Arnaud Deseau & Adam Levai & Michèle Schmiegelow, 2019. "Access to Justice and Economic Development: Evidence from an International Panel Dataset," LIDAM Discussion Papers IRES 2019009, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    5. M. E. Bontempi & I. Mammi, 2012. "A strategy to reduce the count of moment conditions in panel data GMM," Working Papers wp843, Dipartimento Scienze Economiche, Universita' di Bologna.
    6. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    7. Rosen Azad Chowdhury & Bill Russell, 2018. "The difference, system and ‘Double‐D’ GMM panel estimators in the presence of structural breaks," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(3), pages 271-292, July.
    8. Artūras Juodis, 2018. "Rank based cointegration testing for dynamic panels with fixed T," Empirical Economics, Springer, vol. 55(2), pages 349-389, September.
    9. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    10. Aquaro, M., 2013. "Pairwise difference estimation of linear panel data," Other publications TiSEM 2786f9bb-fbe1-4bac-8efc-b, Tilburg University, School of Economics and Management.
    11. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    12. Hayakawa, Kazuhiko & Nagata, Shuichi, 2016. "On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 265-303.
    13. Christoph Morosoli & Peter Draper & Andreas Freytag & Sebastian Schuhmann, 2024. "Drivers of Inclusive Development: An Empirical Investigation," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 36(4), pages 987-1015, August.
    14. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    15. Jan F. Kiviet & Milan Pleus & Rutger Poldermans, 2014. "Accuracy and efficiency of various GMM inference techniques in dynamic micro panel data models," UvA-Econometrics Working Papers 14-09, Universiteit van Amsterdam, Dept. of Econometrics.
    16. Juodis, Arturas & Sarafidis, Vasilis, 2020. "Online Supplement to An Incidental Parameters Free Inference Approach for Panels with Common Shocks," MPRA Paper 104908, University Library of Munich, Germany.
    17. Sarafidis, Vasilis, 2016. "Neighbourhood GMM estimation of dynamic panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 526-544.
    18. Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
    19. Arturas Juodis, 2013. "First Difference Transformation in Panel VAR models: Robustness, Estimation and Inference," UvA-Econometrics Working Papers 13-06, Universiteit van Amsterdam, Dept. of Econometrics.
    20. Lorde, Troy & Li, Gang & Airey, David, 2014. "Modeling Caribbean Tourism Demand: An Augmented Gravity Approach," MPRA Paper 95476, University Library of Munich, Germany.
    21. Takuya Hasebe, 2012. "The tests for the level moment conditions: GMM estimation in a linear dynamic panel data model," Economics Bulletin, AccessEcon, vol. 32(1), pages 412-420.
    22. Maria Elena Bontempi & Jan Ditzen, 2023. "GMM-lev estimation and individual heterogeneity: Monte Carlo evidence and empirical applications," Papers 2312.00399, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuhiko Hayakawa, 2008. "On the Effect of Nonstationary Initial Conditions in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d07-245, Institute of Economic Research, Hitotsubashi University.
    2. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    3. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    4. Moral-Benito, Enrique & Bartolucci, Cristian, 2012. "Income and democracy: Revisiting the evidence," Economics Letters, Elsevier, vol. 117(3), pages 844-847.
    5. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    6. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    7. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    8. G. Everaert, 2009. "Using Backward Means to Eliminate Individual Effects from Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/553, Ghent University, Faculty of Economics and Business Administration.
    9. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    10. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    11. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    12. Everaert, Gerdie & Pozzi, Lorenzo, 2007. "Bootstrap-based bias correction for dynamic panels," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1160-1184, April.
    13. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    14. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    15. Hayakawa, Kazuhiko, 2016. "Improved GMM estimation of panel VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 240-264.
    16. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    17. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    18. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    19. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    20. Zhenlin Yang, 2014. "Initial-Condition Free Estimation of Fixed Effects Dynamic Panel Data Models," Working Papers 16-2014, Singapore Management University, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:153:y:2009:i:2:p:133-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.