IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421520300379.html
   My bibliography  Save this article

Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen

Author

Listed:
  • Liu, Chang
  • Lin, Boqiang

Abstract

China is the largest emerging economy and electricity consumer in the world. Despite the rapid increase in residential electricity consumption, retail residential electricity price in China remained at a low level, leading to large amounts of cross-subsidies. To address this issue, the increasing-block electricity pricing (IBP) system was established in the residential sector nationwide in 2012. This paper depicts the detailed implementation of the IBP in Shanghai and Shenzhen, which are typical Chinese cities. Overall, the IBP motivates residential electricity saving to some extent. However, 15.55% of the respondents still do not know about the IBP. Most respondents have limited knowledge about the contents of the IBP. 58% of the respondents were unaware that retail residential electricity prices were subsidized by the government. Furthermore, binary response models were applied to analyze the influencing factors of respondents' electricity saving feedback on the IBP. The analysis indicates that if households are large, apply time-of-use (TOU) pricing, purchase energy-efficient appliances, have adequate knowledge of electricity saving and IBP contents, or understand the situation of electricity cross-subsidy, they are more likely to be influenced by the IBP to save electricity. The government should enhance public's awareness about IBP, optimize the pricing of each block and guide the residents to understand the existence of electricity subsidy.

Suggested Citation

  • Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300379
    DOI: 10.1016/j.enpol.2020.111278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaohua & Zhang, Bin & Yin, Jianhua & Zhang, Yixiang, 2011. "Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China," Energy Policy, Elsevier, vol. 39(6), pages 3550-3557, June.
    2. Hausman, Jerry A, 1985. "The Econometrics of Nonlinear Budget Sets," Econometrica, Econometric Society, vol. 53(6), pages 1255-1282, November.
    3. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    4. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    5. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    6. Lin, Boqiang & Liu, Chang, 2016. "Why is electricity consumption inconsistent with economic growth in China?," Energy Policy, Elsevier, vol. 88(C), pages 310-316.
    7. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    8. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    9. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    10. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
    11. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    12. Selen CAKMAKYAPAN & Atilla GOKTAS, 2013. "A Comparison Of Binary Logit And Probit Models With A Simulation Study," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 2(1), pages 1-17, JULY.
    13. Wallis, Hannah & Nachreiner, Malte & Matthies, Ellen, 2016. "Adolescents and electricity consumption; Investigating sociodemographic, economic, and behavioural influences on electricity consumption in households," Energy Policy, Elsevier, vol. 94(C), pages 224-234.
    14. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    15. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    16. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    17. Boqiang Lin & Jianglong Li, 2015. "Does China’s Energy Development Plan Affect Energy Conservation? Empirical Evidence from Coal-Fired Power Generation," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(4), pages 798-811, July.
    18. Moffitt, Robert, 1990. "The Econometrics of Kinked Budget Constraints," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 119-139, Spring.
    19. Wang, Shanyong & Lin, Shoufu & Li, Jun, 2018. "Exploring the effects of non-cognitive and emotional factors on household electricity saving behavior," Energy Policy, Elsevier, vol. 115(C), pages 171-180.
    20. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    21. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    22. Du, Gang & Sun, Chuanwang & Fang, Zhongnan, 2015. "Evaluating the Atkinson index of household energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1080-1087.
    23. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    24. Lin, Boqiang & Jiang, Zhujun, 2012. "Designation and influence of household increasing block electricity tariffs in China," Energy Policy, Elsevier, vol. 42(C), pages 164-173.
    25. Han, Q. & Nieuwenhijsen, I. & de Vries, B. & Blokhuis, E. & Schaefer, W., 2013. "Intervention strategy to stimulate energy-saving behavior of local residents," Energy Policy, Elsevier, vol. 52(C), pages 706-715.
    26. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    2. Jia, Zhijie & Lin, Boqiang & Wen, Shiyan, 2022. "Electricity market Reform: The perspective of price regulation and carbon neutrality," Applied Energy, Elsevier, vol. 328(C).
    3. Lin, Boqiang & Lan, Tianxu, 2023. "Progress of increasing-block electricity pricing policy implementation in China's first-tier cities and the impact of resident policy perception," Energy Policy, Elsevier, vol. 177(C).
    4. Wei, Kai & Zhang, Zuopeng Justin & Lin, Boqiang, 2024. "Does news propaganda really affect residents’ electricity rebound effect: New evidence of non-price information," Energy, Elsevier, vol. 300(C).
    5. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    6. Lin, Boqiang & Zhu, Penghu, 2021. "Has increasing block pricing policy been perceived in China? Evidence from residential electricity use," Energy Economics, Elsevier, vol. 94(C).
    7. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    8. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    9. Lin, Boqiang & Li, Zhensheng, 2021. "Does natural gas pricing reform establish an effective mechanism in China: A policy evaluation perspective," Applied Energy, Elsevier, vol. 282(PA).
    10. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    11. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    12. Han, Xintong & Liu, Zimin & Wang, Tong, 2023. "Nonlinear pricing in multidimensional context: An empirical analysis of energy consumption," International Journal of Industrial Organization, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Zhu, Penghu, 2021. "Has increasing block pricing policy been perceived in China? Evidence from residential electricity use," Energy Economics, Elsevier, vol. 94(C).
    2. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    3. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    4. Wang, Chen & Zhou, Kaile & Yang, Shanlin, 2017. "A review of residential tiered electricity pricing in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 533-543.
    5. Wu, Ya & Zhang, Li, 2017. "Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents," Energy Policy, Elsevier, vol. 109(C), pages 208-217.
    6. Lin, Boqiang & Lan, Tianxu, 2023. "Progress of increasing-block electricity pricing policy implementation in China's first-tier cities and the impact of resident policy perception," Energy Policy, Elsevier, vol. 177(C).
    7. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    8. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    9. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    10. Prasanna, Ashreeta & Mahmoodi, Jasmin & Brosch, Tobias & Patel, Martin K., 2018. "Recent experiences with tariffs for saving electricity in households," Energy Policy, Elsevier, vol. 115(C), pages 514-522.
    11. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    12. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    13. Meng, Ming & Wang, Lixue & Shang, Wei, 2018. "Decomposition and forecasting analysis of China's household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models," Energy, Elsevier, vol. 165(PA), pages 143-152.
    14. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    15. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    16. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    17. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    18. Chang Liu & Boqiang Lin, 2018. "Evaluating Design of Increasing Block Tariffs for Residential Natural Gas in China: A Case Study of Henan Province," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1335-1351, December.
    19. Zihan Zhang & Enping Li & Guowei Zhang, 2023. "How Efficient China’s Tiered Pricing Is for Household Electricity: Evidence from Survey Data," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    20. Wang, Shanyong & Lin, Shoufu & Li, Jun, 2018. "Exploring the effects of non-cognitive and emotional factors on household electricity saving behavior," Energy Policy, Elsevier, vol. 115(C), pages 171-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.