IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v98y2018icp40-55.html
   My bibliography  Save this article

State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review

Author

Listed:
  • Hauer, C.
  • Wagner, B.
  • Aigner, J.
  • Holzapfel, P.
  • Flödl, P.
  • Liedermann, M.
  • Tritthart, M.
  • Sindelar, C.
  • Pulg, U.
  • Klösch, M.
  • Haimann, M.
  • Donnum, B.O.
  • Stickler, M.
  • Habersack, H.

Abstract

It is predicted that 60% of all new energy investments over the next 20 years will be in renewables. The estimation for new hydropower production is 25% of all new renewables primarily due to potential in China, Africa, Latin America and South-East Asia. Also in Europe a growth of hydropower production is aimed to achieve emission targets within the European Union by 2050. However, one of the main economic, technical and ecological challenges in future are the deposition, the treatment, and the disturbed dynamics of sediments in river catchments, which reduce the future market potential of hydropower substantially. Due to a lack in awareness of those sedimentological challenges (e.g. lack of process understanding), various huge economical, technical and ecological problems emerge with an increasing relevance for hydropower industry, water management authorities and the society in future. Based on a substantial literature review, (i) legal frameworks and (ii) reservoir management techniques including (iii) process understanding and numerical modelling are addressed in this article. Moreover, the relevant cost-effective aspects of abrasion are worked out for (iv) turbine runners and (v) sediment bypass systems as well as the (vi) the ecological relevance of sediments and possible disturbances are described in this manuscript to open a future discussion on technical opportunities. It was concluded, that all these issues should be addressed within the framework of the overall aim to minimize the costs under consideration of ecological requirements and standards by an improved sediment management in terms of hydropower use. Moreover, it was stated that trans- and interdisciplinary research is required, to achieve those aims in future.

Suggested Citation

  • Hauer, C. & Wagner, B. & Aigner, J. & Holzapfel, P. & Flödl, P. & Liedermann, M. & Tritthart, M. & Sindelar, C. & Pulg, U. & Klösch, M. & Haimann, M. & Donnum, B.O. & Stickler, M. & Habersack, H., 2018. "State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 40-55.
  • Handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:40-55
    DOI: 10.1016/j.rser.2018.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    2. Jean-Luc Kok & Malte Grossmann, 2010. "Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 143-166, January.
    3. Padhy, Mamata Kumari & Saini, R.P., 2008. "A review on silt erosion in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1974-1987, September.
    4. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    5. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    6. Huber, Amelie & Joshi, Deepa, 2015. "Hydropower, Anti-Politics, and the Opening of New Political Spaces in the Eastern Himalayas," World Development, Elsevier, vol. 76(C), pages 13-25.
    7. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Kaixuan & Chang, Jianxia & Wang, Yimin & Guo, Aijun & Huang, Mengdi & Xu, Bo, 2022. "Cascade hydropower stations short-term operation for load distribution considering water level synchronous variation," Renewable Energy, Elsevier, vol. 196(C), pages 683-693.
    2. Huđek, Helena & Žganec, Krešimir & Pusch, Martin T., 2020. "A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Xiao, Yexiang & Liu, Zishi & Liang, Quanwei & Liu, Jie & Zhang, Jin & Zhu, Yilin & Li, Xuesong & Gu, Chunwei, 2024. "The interaction between bucket number and performance of a Pelton turbine," Energy, Elsevier, vol. 287(C).
    5. Vorlet, S.L. & De Cesare, G., 2024. "A comprehensive review on geomembrane systems application in hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Mateusz Hämmerling & Natalia Walczak & Tomasz Kałuża, 2023. "Analysis of the Influence of Hydraulic and Hydrological Factors on the Operating Conditions of a Small Hydropower Station on the Example of the Stary Młyn Barrage on the Głomia River in Poland," Energies, MDPI, vol. 16(19), pages 1-22, September.
    7. Lenio Prado & Marcelo Fonseca & José V. Bernardes & Mateus G. Santos & Edson C. Bortoni & Guilherme S. Bastos, 2023. "Forecast of Operational Downtime of the Generating Units for Sediment Cleaning in the Water Intakes: A Case of the Jirau Hydropower Plant," Energies, MDPI, vol. 16(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoodi, Junaid H. & Harmain, G.A., 2017. "A methodology for assessment of erosive wear on a Francis turbine runner," Energy, Elsevier, vol. 118(C), pages 644-657.
    2. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    3. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    4. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    5. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    6. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    7. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
    8. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    9. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    10. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    11. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    12. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole Gunnar, 2012. "Current research in hydraulic turbines for handling sediments," Energy, Elsevier, vol. 47(1), pages 62-69.
    13. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    14. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    15. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    16. Han, L. & Wang, Y. & Zhang, G.F. & Wei, X.Z., 2021. "The particle induced energy loss mechanism of Pelton turbine," Renewable Energy, Elsevier, vol. 173(C), pages 237-248.
    17. Babu, Abhishek & Perumal, G. & Arora, H.S. & Grewal, H.S., 2021. "Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications," Renewable Energy, Elsevier, vol. 180(C), pages 1044-1055.
    18. McCauley, Darren & Pettigrew, Kerry, 2023. "Building a just transition in asia-pacific: Four strategies for reducing fossil fuel dependence and investing in clean energy," Energy Policy, Elsevier, vol. 183(C).
    19. Bernhard Schober & Christoph Hauer & Helmut Habersack, 2015. "A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 33-50, February.
    20. Shirley, Rebekah G. & Word, Jettie, 2018. "Rights, rivers and renewables: Lessons from hydropower conflict in Borneo on the role of cultural politics in energy planning for Small Island Developing States," Utilities Policy, Elsevier, vol. 55(C), pages 189-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:40-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.