IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6905-d1251616.html
   My bibliography  Save this article

Analysis of the Influence of Hydraulic and Hydrological Factors on the Operating Conditions of a Small Hydropower Station on the Example of the Stary Młyn Barrage on the Głomia River in Poland

Author

Listed:
  • Mateusz Hämmerling

    (Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, 60-637 Poznań, Poland)

  • Natalia Walczak

    (Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, 60-637 Poznań, Poland)

  • Tomasz Kałuża

    (Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, 60-637 Poznań, Poland)

Abstract

The operation of water structures causes various problems. They are related, for example, to the material carried by the water, hydrological conditions, range of operation of hydroelectric turbines, or water elevations at the lower position of the hydroelectric power plant. Among the various operational problems, this article focuses mainly on the impact of the backwater of Gwda river on the water level elevations at the lower station of the Stary Młyn hydropower plant in Dobrzyca. The power plant is located on Głomia river. The analysis was carried out for different flow variants in both the Gwda and Głomia rivers. The effect of characteristic flows on the water surface level at the lower station of the hydropower plant was examined. It was found that the water surface level at the lower station of the hydropower plant is strongly influenced by flows higher than the average high flow on Gwda river. Due to the extent of the backwater in current operating conditions, the hydroelectric power plant is shut down from flows on Gwda river of 30–28 m 3 /s (flows that are not much higher than the multi-year average SSQ). The modeling results were confirmed by an analysis of power plant shutdowns of normal operation especially in wet years, when the plant did not operate for almost half of the year (188 days), with losses of 203 MWh. It was also shown that even a small additional damming of water, e.g., of the order of 0.2 m, can extend the operating time of a power plant up to 249 days even under unfavorable hydrological conditions. Factors related to climate change are beginning to play an increasingly important role in the current operating conditions of small lowland hydroelectric power plants. They can contribute to a reduction in electricity production. The proposed solution related to the possibility of greater water retention on dammed-up water barrages allows one to partially offset these problems as well.

Suggested Citation

  • Mateusz Hämmerling & Natalia Walczak & Tomasz Kałuża, 2023. "Analysis of the Influence of Hydraulic and Hydrological Factors on the Operating Conditions of a Small Hydropower Station on the Example of the Stary Młyn Barrage on the Głomia River in Poland," Energies, MDPI, vol. 16(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6905-:d:1251616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. Hauer, C. & Wagner, B. & Aigner, J. & Holzapfel, P. & Flödl, P. & Liedermann, M. & Tritthart, M. & Sindelar, C. & Pulg, U. & Klösch, M. & Haimann, M. & Donnum, B.O. & Stickler, M. & Habersack, H., 2018. "State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 40-55.
    3. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    4. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Historical development and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Bigerna, Simona & D’Errico, Maria Chiara & Polinori, Paolo, 2022. "Dynamic forecast error variance decomposition as risk management process for the Gulf Cooperation Council oil portfolios," Resources Policy, Elsevier, vol. 78(C).
    6. Natalia Walczak & Zbigniew Walczak & Jakub Nieć, 2021. "Influence of Debris on Water Intake Gratings in Small Hydroelectric Plants: An Experimental Study on Hydraulic Parameters," Energies, MDPI, vol. 14(11), pages 1-13, June.
    7. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Barriers and the outlook for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Natalia Walczak & Zbigniew Walczak & Jakub Nieć, 2020. "Assessment of the Resistance Value of Trash Racks at a Small Hydropower Plant Operating at Low Temperature," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    10. Amri, Fethi, 2017. "Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 527-534.
    11. Mayeda, A.M. & Boyd, A.D., 2020. "Factors influencing public perceptions of hydropower projects: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    13. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    2. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    3. Guillaume Bon & Ludovic Chatellier & Yves Le Guer & Cécile Bellot & Xavier Casiot & Laurent David, 2024. "Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts," Energies, MDPI, vol. 17(14), pages 1-19, July.
    4. Kuo-Chen Wu & Jui-Chu Lin & Wen-Te Chang & Chia-Szu Yen & Huang-Jie Fu, 2023. "Research and Analysis of Promotional Policies for Small Hydropower Generation in Taiwan," Energies, MDPI, vol. 16(13), pages 1-16, June.
    5. Lei, Kaixuan & Chang, Jianxia & Wang, Yimin & Guo, Aijun & Huang, Mengdi & Xu, Bo, 2022. "Cascade hydropower stations short-term operation for load distribution considering water level synchronous variation," Renewable Energy, Elsevier, vol. 196(C), pages 683-693.
    6. Vincenzo Di Dio & Giovanni Cipriani & Donatella Manno, 2022. "Axial Flux Permanent Magnet Synchronous Generators for Pico Hydropower Application: A Parametrical Study," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Arkadiusz Piwowar & Maciej Dzikuć, 2022. "Water Energy in Poland in the Context of Sustainable Development," Energies, MDPI, vol. 15(21), pages 1-13, October.
    9. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    11. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    12. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    13. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    15. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    16. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    17. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    19. Guo, Liang-Liang & Zhang, Yong-Bo & Wang, Zhi-Chao & Zeng, Jian & Zhang, Yan-Jun & Zhang, Zhi-Xiang, 2020. "Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 813-831.
    20. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6905-:d:1251616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.