IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp237-248.html
   My bibliography  Save this article

The particle induced energy loss mechanism of Pelton turbine

Author

Listed:
  • Han, L.
  • Wang, Y.
  • Zhang, G.F.
  • Wei, X.Z.

Abstract

As hydraulic resource is widely developed in high mountainous area, design and optimization of Pelton turbine have attracted more and more academic attention especially in ultra-high hydraulic head condition. Computed Fluid Dynamics (CFD), as an effective tool to simulate flow in Pelton turbine has been proved to be practical and used widely. Mechanism of the energy loss produced by erosion is investigated through numerical simulation. Simulation is then confirmed by is then by comparing with the experimental results in clean water flow condition. Through CFD, under Eulerian-Eulerian methodology, three-phase erosion flow is then calculated and complex flow in runner region are analysed. Comparing with clean water condition, the hydraulic efficiency of the turbine decreases in erosion condition, the particle mixed in the flow will disturb the water distribution on the working side of the bucket. Finally, the torque produced by water and particle are then distinguished quantitatively. As the erosion phenomenon exists which confirmed by the experiment in the literature, the particle disturbs the water distribution and then decreases the total torque and definitely decreases the hydraulic efficiency around 9%. It reveals that the energy loss caused by the erosion phenomenon plays an important role in power plant.

Suggested Citation

  • Han, L. & Wang, Y. & Zhang, G.F. & Wei, X.Z., 2021. "The particle induced energy loss mechanism of Pelton turbine," Renewable Energy, Elsevier, vol. 173(C), pages 237-248.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:237-248
    DOI: 10.1016/j.renene.2021.03.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas, 2020. "Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine," Renewable Energy, Elsevier, vol. 145(C), pages 893-902.
    2. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    3. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    4. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    5. Han, L. & Duan, X.L. & Gong, R.Z. & Zhang, G.F. & Wang, H.J. & Wei, X.Z., 2019. "Physic of secondary flow phenomenon in distributor and bifurcation pipe of Pelton turbine," Renewable Energy, Elsevier, vol. 131(C), pages 159-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, L. & Zhang, G.F. & Wang, Y. & Wei, X.Z., 2021. "Investigation of erosion influence in distribution system and nozzle structure of pelton turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1119-1128.
    2. Tomasz Płusa & Katarzyna Kocewiak & Piotr Duda, 2024. "Analysis of the Possibilities of Energy Recovery from Gravity Flows in Pipelines in a Copper Ore Enrichment Plant," Energies, MDPI, vol. 17(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    2. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    3. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    4. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    5. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
    6. Hauer, C. & Wagner, B. & Aigner, J. & Holzapfel, P. & Flödl, P. & Liedermann, M. & Tritthart, M. & Sindelar, C. & Pulg, U. & Klösch, M. & Haimann, M. & Donnum, B.O. & Stickler, M. & Habersack, H., 2018. "State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 40-55.
    7. Masoodi, Junaid H. & Harmain, G.A., 2017. "A methodology for assessment of erosive wear on a Francis turbine runner," Energy, Elsevier, vol. 118(C), pages 644-657.
    8. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    9. Franz Josef Johann Hahn & Anton Maly & Bernhard Semlitsch & Christian Bauer, 2023. "Numerical Investigation of Pelton Turbine Distributor Systems with Axial Inflow," Energies, MDPI, vol. 16(6), pages 1-20, March.
    10. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    11. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    12. Xiao, Yexiang & Liu, Zishi & Liang, Quanwei & Liu, Jie & Zhang, Jin & Zhu, Yilin & Li, Xuesong & Gu, Chunwei, 2024. "The interaction between bucket number and performance of a Pelton turbine," Energy, Elsevier, vol. 287(C).
    13. Khanal, Krishna & Neopane, Hari P. & Rai, Shikhar & Thapa, Manoj & Bhatt, Subendu & Shrestha, Rajendra, 2016. "A methodology for designing Francis runner blade to find minimum sediment erosion using CFD," Renewable Energy, Elsevier, vol. 87(P1), pages 307-316.
    14. George Aggidis & Audrius Židonis & Luke Burtenshaw & Marc Dubois & Stephen Orritt & Dominic Pickston & George Prigov & Luke Wilmot, 2023. "Development of a Novel High Head Impulse Hydro Turbine," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
    15. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    16. Alimirzazadeh, Siamak & Kumashiro, Takashi & Leguizamón, Sebastián & Jahanbakhsh, Ebrahim & Maertens, Audrey & Vessaz, Christian & Tani, Kiyohito & Avellan, François, 2020. "GPU-accelerated numerical analysis of jet interference in a six-jet Pelton turbine using Finite Volume Particle Method," Renewable Energy, Elsevier, vol. 148(C), pages 234-246.
    17. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    18. Pang, Jiayang & Liu, Huizi & Liu, Xiaobing & Yang, Han & Peng, Yuanjie & Zeng, Yongzhong & Yu, Zhishun, 2022. "Study on sediment erosion of high head Francis turbine runner in Minjiang River basin," Renewable Energy, Elsevier, vol. 192(C), pages 849-858.
    19. Kramer, Matthias & Terheiden, Kristina & Wieprecht, Silke, 2015. "Optimized design of impulse turbines in the micro-hydro sector concerning air detrainment processes," Energy, Elsevier, vol. 93(P2), pages 2604-2613.
    20. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:237-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.