IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1044-1055.html
   My bibliography  Save this article

Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications

Author

Listed:
  • Babu, Abhishek
  • Perumal, G.
  • Arora, H.S.
  • Grewal, H.S.

Abstract

The deterioration of fluid machines due to slurry and cavitation erosion significantly impairs their serviceability. In the present work, we investigated the influence of deep cryogenic treatment (DCT) on the slurry and cavitation erosion resistance of WC-10Co-4Cr coatings developed using the detonation spraying technique. For comparison, hydroturbine steels and other conventional (Alumina and Stellite 6) coatings were also investigated. All thermal spray coatings showed typical lamellar structure along with the presence of pores and splat boundaries. Among all the coatings, the WC-10Co-4Cr showed the highest slurry (up to 15 times) and cavitation (2 times) erosion resistance owing to high hardness and fracture toughness. Post DCT, the WC-10Co-4Cr coating showed further improvement due to reduced porosity and improved hardness without decrement in fracture toughness. As a result, the DCT coating showed 1.5 to 4.2 times improved slurry erosion resistance than the as-sprayed counterpart, along with 1.6 times higher cavitation erosion resistance. The improved tribological performance of the coating after DCT is associated with enhanced hardness due to the presence of nano precipitates and densification as analyzed using electrochemical techniques. The topological analysis of the eroded surfaces indicated micro-cutting, micro-cracking, and delamination as the primary mechanism controlling the erosion behavior of the coatings.

Suggested Citation

  • Babu, Abhishek & Perumal, G. & Arora, H.S. & Grewal, H.S., 2021. "Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications," Renewable Energy, Elsevier, vol. 180(C), pages 1044-1055.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1044-1055
    DOI: 10.1016/j.renene.2021.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas, 2020. "Effect of concentration and size of sediments on hydro-abrasive erosion of Pelton turbine," Renewable Energy, Elsevier, vol. 145(C), pages 893-902.
    2. Padhy, Mamata Kumari & Saini, R.P., 2008. "A review on silt erosion in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1974-1987, September.
    3. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    4. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    5. Kumar, Pardeep & Saini, R.P., 2010. "Study of cavitation in hydro turbines--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 374-383, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    2. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
    3. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    4. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    7. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    8. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    9. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    10. Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
    11. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    12. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    13. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    14. Boyi Xiao & Yun Zeng & Wenqing Hu & Yuesong Cheng, 2024. "Feature Extraction of Flow Sediment Content of Hydropower Unit Based on Voiceprint Signal," Energies, MDPI, vol. 17(5), pages 1-15, February.
    15. Hauer, C. & Wagner, B. & Aigner, J. & Holzapfel, P. & Flödl, P. & Liedermann, M. & Tritthart, M. & Sindelar, C. & Pulg, U. & Klösch, M. & Haimann, M. & Donnum, B.O. & Stickler, M. & Habersack, H., 2018. "State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 40-55.
    16. Masoodi, Junaid H. & Harmain, G.A., 2017. "A methodology for assessment of erosive wear on a Francis turbine runner," Energy, Elsevier, vol. 118(C), pages 644-657.
    17. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    18. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    19. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    20. Marina Moreira & Ivan Felipe Silva Santos & Lilian Ferreira Freitas & Flávio Ferreira Freitas & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho, 2022. "Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1799-1826, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1044-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.