IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp455-462.html
   My bibliography  Save this article

Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer

Author

Listed:
  • Ali, M.
  • El-Hameed, M.A.
  • Farahat, M.A.

Abstract

The aim of this paper is to develop an accurate model for the polymer electrolyte membrane fuel cell (PEMFC), that can precisely mimic and simulate the electrical characteristics of actual PEMFC stacks at different operating conditions. Models of PEMFC are empirical, multi-variables and have many non-linear terms that should be estimated accurately to ensure appropriate modeling. In this paper, a novel application based-on a nature-inspired metaheuristic optimization algorithm namely, the grey wolf optimizer (GWO) to identify PEMFC model parameters is addressed. The GWO relies on the principles of metaheuristic techniques, exploration and exploitation phases, in order to avoid sticking in local optima and getting better solution. The proposed GWO-based method is tested on five commercial PEMFCs. Many investigations and performance tests are made to prove the effectiveness of the algorithm to simulate the electrical behavior of those commercial PEMFC stacks based-on experimental data. In addition, parametric and non-parametric statistical tests are in place to assess the effectiveness of the proposed method. For more validation, PEMFC model based-on GWO is compared with other challenging algorithms published in literature, and very competitive results are reported.

Suggested Citation

  • Ali, M. & El-Hameed, M.A. & Farahat, M.A., 2017. "Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer," Renewable Energy, Elsevier, vol. 111(C), pages 455-462.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:455-462
    DOI: 10.1016/j.renene.2017.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:455-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.