IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp569-577.html
   My bibliography  Save this article

Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm

Author

Listed:
  • Yang, Shipin
  • Chellali, Ryad
  • Lu, Xiaohua
  • Li, Lijuan
  • Bo, Cuimei

Abstract

Accurate models of PEM (proton exchange membrane) fuel cells are of great significance for the analysis and the control for power generation. We present a new semi-empirical model to predict the voltage outputs of PEM fuel cell stacks. We also introduce a new estimation method, called AC-POA (aging and challenging P systems based optimization algorithm) allowing deriving the parameters of the semi-empirical model. In our model, the cathode inlet pressure is selected as an additional factor to modify the expression of concentration over-voltage Vcon for traditional Amphlett's PEM fuel cell model. In AC-POA, the aging-mechanism inspired object updating rule is merged in existing P system. We validate through experiments the effectiveness of AC-POA and the fitting accuracy of our model. Modeling comparison results show that the predictions of our model are the best in terms of fitting to actual sample data.

Suggested Citation

  • Yang, Shipin & Chellali, Ryad & Lu, Xiaohua & Li, Lijuan & Bo, Cuimei, 2016. "Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm," Energy, Elsevier, vol. 109(C), pages 569-577.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:569-577
    DOI: 10.1016/j.energy.2016.04.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    2. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    3. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    4. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    5. Neves, Diana & Silva, Carlos A., 2015. "Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms," Energy, Elsevier, vol. 82(C), pages 436-445.
    6. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    4. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    5. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    6. Cai, Shanshan & Li, Xu & Yang, Ling & Hua, Zhipeng & Li, Song & Tu, Zhengkai, 2024. "Demand flexibility and its impact on a PEM fuel cell-based integrated energy supply system with humidity control," Renewable Energy, Elsevier, vol. 228(C).
    7. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    8. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    9. Wenshang Chen & Yang Liu & Ben Chen, 2022. "Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles," Energies, MDPI, vol. 15(7), pages 1-18, March.
    10. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    11. Barzegari, Mohammad M. & Alizadeh, Ebrahim & Pahnabi, Amir H., 2017. "Grey-box modeling and model predictive control for cascade-type PEMFC," Energy, Elsevier, vol. 127(C), pages 611-622.
    12. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    13. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    14. Sun, Zhe & Cao, Dan & Ling, Yawen & Xiang, Feng & Sun, Zhixin & Wu, Fan, 2021. "Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm," Energy, Elsevier, vol. 216(C).
    15. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    16. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    2. Li, Dazi & Yu, Yadi & Jin, Qibing & Gao, Zhiqiang, 2014. "Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 68(C), pages 210-217.
    3. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    4. Gong, Wenyin & Cai, Zhihua, 2013. "Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution," Energy, Elsevier, vol. 59(C), pages 356-364.
    5. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    6. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    7. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    8. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    9. Chen, Ben & Cai, Yonghua & Tu, Zhengkai & Chan, Siew Hwa & Wang, Jun & Yu, Yi, 2017. "Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation I. With different electrolytes," Energy, Elsevier, vol. 141(C), pages 40-49.
    10. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    11. Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.
    12. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    13. Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
    14. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    15. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    16. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    17. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    18. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng, 2015. "A self-adaptive supply method of micro direct methanol fuel cell," Energy, Elsevier, vol. 91(C), pages 1064-1069.
    19. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    20. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng & Wang, Shikai & Xu, Tingnian, 2015. "Mass transport optimization in the anode diffusion layer of a micro direct methanol fuel cell," Energy, Elsevier, vol. 93(P1), pages 599-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:569-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.